Small molecule inhibitors for influenza treatment
用于流感治疗的小分子抑制剂
基本信息
- 批准号:9409086
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAdamantaneAddressAffectAntiviral AgentsAttentionBindingBiological AssayBirdsCell Culture TechniquesCell NucleusCellsCessation of lifeChemicalsClinicalDangerousnessDevelopmentDrug TargetingDrug resistanceEnsureEscape MutantFamily suidaeFeasibility StudiesFutureGeneticGenetic TranscriptionGenomeHospitalizationHumanIn VitroInfectionInfluenzaInfluenza A Virus, H1N1 SubtypeInfluenza A Virus, H5N1 SubtypeInfluenza A Virus, H7N9 SubtypeInfluenza TherapeuticLeadM2 proteinMorbidity - disease rateNeuraminidase inhibitorNuclearNucleoproteinsOseltamivirPersonsPharmaceutical ChemistryPharmaceutical PreparationsPhasePlayPopulationProductionPropertyPublic HealthRNARNA VirusesRNA replicationReadinessResearchResistanceRoleSeriesTechnologyTestingTimeUnited StatesVaccinesValidationVariantViralVirusYeastsanaloganti-influenzabasecombatcombinatorialcytotoxicitydrug discoveryefficacy studyfitnessimprovedin vivoinfluenza epidemicinfluenza virus vaccineinfluenzavirusinhibitor/antagonistinnovationlead seriesmortalitynovelnovel therapeuticspandemic diseasepandemic influenzaphase 2 studypreventresistant strainscaffoldseasonal influenzasmall molecule inhibitortherapeutic target
项目摘要
Influenza is a continuing worldwide public health problem associated with significant morbidity and mortality.
Seasonal influenza epidemics affect about 10% of the world's population, and annual estimates of mortality
range from 250,000 – 500,000 deaths. Due to constant antigenic drift, the approved seasonal influenza
vaccine is variably effective from year to year, and a universal vaccine is still a long way off. Two classes of
antivirals have been developed, the adamantanes, which target the viral M2 protein, and the viral
neuraminidase (NA) inhibitors. However, drug resistance has abolished clinical adamantane use, and there is
a growing problem of resistance to oseltamivir, the most widely prescribed of the NA inhibitors. Because of
drug resistance issues, lack of a universal vaccine, and the threat of future pandemics, there is a clear and
pressing need for development of novel anti-influenza therapeutics. Influenza virus is an enveloped, negative
strand RNA virus whose genome is copied in the nucleus of infected cells. The viral nucleoprotein NP plays
critical roles in RNA packaging, transcription of the genome to the positive sense species, and RNA replication
to negative sense genomes for new virus production. For these reasons NP is an attractive drug target.
Alexander BioDiscoveries, LLC has identified novel, specific, potent inhibitors of NP using an innovative, yeast-
based antiviral drug discovery technology. These inhibitors bind directly to NP and also prevent its
accumulation in the nucleus of infected cells, accounting for its potent antiviral activity. A one-year Phase I
feasibility study is proposed to establish robust SAR that will lay the groundwork for a future Phase II study
directed at lead optimization, PK and in vivo efficacy studies. In Specific Aim 1, a comprehensive medicinal
chemistry approach will be undertaken to improve potency, establish SAR and ensure drug-like properties.
Two distinct starting points have been chosen, each based on compounds with excellent antiviral activity in cell
culture and minimal cytotoxicity. Combinatorial and discrete syntheses will be conducted to generate
numerous analogs for in vitro binding studies and antiviral testing. For Specific Aim 2, a combination of
antiviral, in vitro binding, cytotoxicity, and NP nuclear localization assays will be used to assess activity of
analogs generated in Aim 1. Selected compounds will also be compared with oseltamivir and in addition be
used in combination with oseltamivir. Broad-spectrum activity will be addressed using a variety of recent H1N1
and H3N2 seasonal strains, including oseltamivir-resistant and adamantane-resistant strains. Selected
compounds will be used to select viral escape mutants in order to characterize the genetics of drug resistance,
if it exists, and the fitness of resistant viral variants.
流感是一个持续存在的全球公共卫生问题,发病率和死亡率很高。
季节性流感流行影响世界约 10% 的人口,每年估计死亡率
由于持续的抗原漂移,批准的季节性流感导致 250,000 至 500,000 人死亡。
疫苗的效果每年都有所不同,距离通用疫苗还有很长的路要走。 两类疫苗。
已经开发出抗病毒药物,金刚烷(针对病毒 M2 蛋白)和病毒
神经氨酸酶 (NA) 抑制剂然而,耐药性已经废除了金刚烷的临床使用。
对奥司他韦(最广泛使用的 NA 抑制剂)的耐药性问题日益严重。
耐药性问题、缺乏通用疫苗以及未来流行病的威胁,有一个明确且明确的问题
迫切需要开发新型抗流感疗法。流感病毒是一种有包膜的阴性病毒。
链RNA病毒,其基因组在受感染细胞的细胞核中复制,病毒核蛋白NP发挥作用。
在 RNA 包装、基因组转录为正义物种以及 RNA 复制中发挥关键作用
出于这些原因,NP 是一个有吸引力的药物靶标。
Alexander BioDiscoveries, LLC 使用创新的酵母菌鉴定了新型、特异、有效的 NP 抑制剂
这些抑制剂直接与 NP 结合并阻止其发生。
积聚在受感染细胞的细胞核中,解释了其一年期的有效抗病毒活性。
提议进行可行性研究,以建立强大的SAR,为未来的第二阶段研究奠定基础
针对先导化合物优化、PK 和体内功效研究,具体目标 1 是一项综合性药物研究。
将采用化学方法来提高效力、建立 SAR 并确保药物的类似特性。
选择了两个不同的起点,每个起点都基于在细胞中具有优异抗病毒活性的化合物
将进行组合和离散合成以产生培养物和最小的细胞毒性。
用于体外结合研究和抗病毒测试的多种类似物,针对特定目标 2,组合使用。
抗病毒、体外结合、细胞毒性和 NP 核定位测定将用于评估
目标 1 中生成的类似物。选定的化合物还将与奥司他韦进行比较,此外
与奥司他韦联合使用将使用多种最近的 H1N1 药物来解决广谱活性。
和 H3N2 季节性菌株,包括奥司他韦耐药菌株和金刚烷耐药菌株。
化合物将用于选择病毒逃逸突变体,以表征耐药性的遗传学,
如果存在的话,以及耐药病毒变种的适应性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cyrille Gineste其他文献
Cyrille Gineste的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cyrille Gineste', 18)}}的其他基金
Designing safe, potent, and cost-effective small peptide erythropoietin analogs
设计安全、有效且经济有效的小肽促红细胞生成素类似物
- 批准号:
10602271 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
相似国自然基金
乙基桥键金刚烷类化合物形成机理及在深层油气地球化学研究中的应用
- 批准号:42272167
- 批准年份:2022
- 资助金额:57 万元
- 项目类别:面上项目
高金刚烷类笼状PPAPs家族天然产物的对映选择性全合成
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
金刚烷胺B细胞受体CDR3免疫组库动态演化及分子识别机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金刚烷类化合物在有机质来源和成因判识中的应用研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
高氧化度氮杂金刚烷骨架构建及其高能量密度衍生物的合成与性能研究
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
相似海外基金
Novel, Self-Applied MicroArray Patch (MAP) of Zanamivir for Treatment of the Flu
用于治疗流感的新型扎那米韦自用微阵列贴片 (MAP)
- 批准号:
10761086 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Local immune modulation for beta cell replacement therapy in type 1 diabetes
1 型糖尿病 β 细胞替代疗法的局部免疫调节
- 批准号:
10596656 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Local immune modulation for beta cell replacement therapy in type 1 diabetes
1 型糖尿病 β 细胞替代疗法的局部免疫调节
- 批准号:
10713402 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Synthetic Strategies to Restore the Efficacy of Venetoclax in Acute Myeloid Leukemia
恢复 Venetoclax 在急性髓系白血病中的疗效的综合策略
- 批准号:
10457407 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Synthetic Strategies to Restore the Efficacy of Venetoclax in Acute Myeloid Leukemia
恢复 Venetoclax 在急性髓系白血病中的疗效的综合策略
- 批准号:
10290284 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别: