Mechanisms of Insulin Resistance in Diabetes
糖尿病胰岛素抵抗的机制
基本信息
- 批准号:9124595
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-10-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAffectBlood GlucoseBody Weight decreasedCell Culture SystemCellsChronicClinicalCoupledCultured CellsDataDefectDevelopmentDiabetes MellitusDiabetic mouseDiseaseDoseElementsEnergy MetabolismFastingGLUT4 geneGene ExpressionGenesGenetic TranscriptionGlucoseGlycogenHexosaminesHomologous GeneHumanHyperglycemiaIndividualInsulinInsulin ResistanceKnockout MiceLinkLipidsMediatingMediator of activation proteinMetabolicMetabolic syndromeMetabolismMitochondriaMolecularMusMuscleMuscle CellsNon-Insulin-Dependent Diabetes MellitusNutrientPathway interactionsPatientsPhysiologicalPrediabetes syndromeProcessProtein GlycosylationProteinsProtocols documentationPublishingRegulationRegulatory ElementReporter GenesReportingRodent ModelRoleSeveritiesSkeletal MuscleStreptozocinTestingTherapeuticTimeToxic effectTransgenic MiceTransgenic OrganismsTranslational Researchbaseblood glucose regulationdiabetes controldiabetic patientdisorder controlfasting glucosefeedingglucose metabolismglucose toleranceglucose transportglucose uptakeglycemic controlglycosylationhuman subjectimprovedin vivoinsightinsulin secretioninsulin sensitivityinsulin signalinglink proteinmouse modelnew therapeutic targetnovelnutrient deprivationnutrient metabolismoverexpressionoxidationpromoterpublic health relevanceresearch study
项目摘要
DESCRIPTION (provided by applicant):
Hyperglycemia worsens Insulin resistance in skeletal muscle in both Type 1 and Type 2 diabetic patients, and high glucose induces defects in insulin-stimulated glucose transport in target cells.
Glucose-induced insulin resistance (`glucose toxicity') requires glucose metabolism via the hexosamine biosynthetic pathway; however, despite 2 decades of study, the molecular link between hexosamine pathway metabolism and defects in insulin action remain unknown. We have reported that muscle TRIB3 is inversely correlated with insulin sensitivity and positively correlated with fasting glucose in human patients is induced by glucose in a manner that is dependent upon the hexosamine pathway, and mediates defects in insulin-stimulated glucose transport in muscle. In addition to its pathological role in chronic hyperglycemia, we have also defined a novel regulatory role for TRIB3 in the acute regulation of nutrient metabolism under conditions of nutrient excess and fasting. We will now identify mechanism by which glucose induces TRIB3 expression and determine whether TRIB3 mediates glucose induced insulin resistance and regulates fuel metabolism in humans and genetically manipulated mice. To test these hypotheses, our specific aims will be: Aim 1: Identify the mechanisms (cis elements and trans factors) by which glucose induces TRIB3 gene expression. Aim 2: In muscle-specific transgenic and knockout mice, examine whether (i) glucose-induced insulin resistance in diabetes and (ii) the metabolic effects of nutrient deprivation and excess, are mediated in a TRIB3 dependent manner. Aim 3: Assess contribution of muscle TRIB3 in regulating insulin sensitivity and metabolism, both systemically and at the level of skeletal muscle, in: (i) T2DM patients before and after euglycemic therapy to examine glucose-induced insulin resistance, and (ii) in subjects during hypocaloric feeding and stable weight loss. Thus, we will elucidate fo the first time a pathophysiological role for TRIB3 as a mediator of glucose- induced insulin resistance in diabetes, and the ability of TRIB3 to act as an acute physiological regulator of glucose transport and mitochondrial oxidation in the context of available intracellular fuel stores
during periods of fasting and nutrient excess. These data in cultured cells, genetically-manipulated mice, and human subjects will elucidate a novel pathophysiological role for TRIB3 in glucose-induced insulin resistance, and a novel physiological role in the regulation of fuel metabolism. These studies will develop TRIB3 as a new target for therapy in diabetes.
描述(由申请人提供):
高血糖会恶化 1 型和 2 型糖尿病患者骨骼肌的胰岛素抵抗,而高血糖会导致靶细胞中胰岛素刺激的葡萄糖转运出现缺陷。
葡萄糖诱导的胰岛素抵抗(“葡萄糖毒性”)需要通过己糖胺生物合成途径进行葡萄糖代谢;然而,尽管经过了 20 年的研究,己糖胺途径代谢与胰岛素作用缺陷之间的分子联系仍然未知。在人类患者中,与胰岛素敏感性呈负相关,与空腹血糖呈正相关,它是由葡萄糖以依赖于己糖胺途径的方式诱导的,并介导肌肉中胰岛素刺激的葡萄糖转运的缺陷。除了其在慢性高血糖中的病理作用外,我们还确定了 TRIB3 在营养过量和禁食条件下营养代谢的急性调节中的新调节作用。我们现在将确定葡萄糖诱导 TRIB3 表达的机制并确定 TRIB3 是否介导。葡萄糖诱导胰岛素抵抗并调节人类和基因操纵小鼠的燃料代谢为了检验这些假设,我们的具体目标是: 目标 1:确定葡萄糖诱导 TRIB3 的机制(顺式元件和反式因子)。目标 2:在肌肉特异性转基因和基因敲除小鼠中,检查 (i) 糖尿病中葡萄糖诱导的胰岛素抵抗和 (ii) 营养缺乏和过量的代谢影响是否以 TRIB3 依赖性方式介导。 :评估肌肉 TRIB3 在系统性和骨骼肌水平上调节胰岛素敏感性和代谢的贡献:(i) 在正常血糖治疗之前和之后检查葡萄糖诱导的胰岛素的 T2DM 患者因此,我们将首次阐明 TRIB3 作为糖尿病中葡萄糖诱导的胰岛素抵抗的调节剂的病理生理学作用,以及 TRIB3 发挥作用的能力。在可用的细胞内燃料储存的背景下,葡萄糖转运和线粒体氧化的急性生理调节剂
这些在培养细胞、基因操作小鼠和人类受试者中的数据将阐明 TRIB3 在葡萄糖诱导的胰岛素抵抗中的新的病理生理学作用,以及在燃料代谢研究的调节中的新的生理学作用。将开发 TRIB3 作为糖尿病治疗的新靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
W Timothy GARVEY其他文献
W Timothy GARVEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('W Timothy GARVEY', 18)}}的其他基金
Depletion of pancreatic lipid improves beta-cell function in early type 2 diabetes
胰腺脂质的消耗可改善早期 2 型糖尿病的 β 细胞功能
- 批准号:
10379925 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Depletion of pancreatic lipid improves beta-cell function in early type 2 diabetes
胰腺脂质的消耗可改善早期 2 型糖尿病的 β 细胞功能
- 批准号:
9902431 - 财政年份:2018
- 资助金额:
-- - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Investigating the Effect of FLASH-Radiotherapy on Tumor and Normal Tissue
研究 FLASH 放射治疗对肿瘤和正常组织的影响
- 批准号:
10650476 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
-- - 项目类别: