Targeting TCA cycle in Brain Tumor Initiating Cells

靶向脑肿瘤起始细胞中的 TCA 循环

基本信息

  • 批准号:
    9263682
  • 负责人:
  • 金额:
    $ 0.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-05-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): The human brain represents one of the most metabolically active organs with a highly efficient ability to extract glucose as the primary currency for energy and carbon source. In particular, neurons are distinguished in their ability to preferentially absorb glucose from a nutrient-restricted environment through the expression of high affinity glucose transporters. The most prevalent primary brain tumor, glioblastoma, ranks among the most lethal of human cancers. Like the normal brain, glioblastomas contain cellular hierarchies with self-renewing, multi-lineage cells at the apex. These brain tumor initiating cells display therapeutic resistance, promote tumor angiogenesis, and invade into normal tissues providing rationale to model their regulation and develop targeting strategies. We recently demonstrated that brain tumor initiating cells display a marked ability to survive the reduced nutrient levels found in the neoplastic brain through the cooption of the neuronal glucose transporter, GLUT3. In contrast, non-stem cell-like tumor cells underwent cell death with nutrient restriction with a cellular plasticity towards a stem cell-like state in surviving cells. Collectivly, these studies identify a novel molecular mechanism associated with the tumor cellular hierarchy that could provide a node of fragility as targeting GLUT3 expression reduced brain tumor initiating cell self-renewal and tumor growth. Like all cancers, glioblastomas display the Warburg effect, a preferential utilization of aerobic glycolysis for energy supplies. This aerobic glycolyss frees the cells from oxygen requirements and provides a steady supply of anabolic material, yet is highly glucose inefficient and requires a steady supply of glucose, suggesting a potential therapeutic target. Based on this background, we hypothesize that preferential use of glucose-derived carbon backbones for macromolecular biosynthesis allows brain tumor initiating cells to survive under extracellular energy stress and provides an ability to these cells to occupy a diverse set of niches with different metabolic limitations. The anti- angiogenic bevacizumab has shown promise in the initial response of tumors to therapy but has failed to extend survival. Studies have suggested that angiogenic inhibitor resistance is associated with impaired vascular function and metabolic shifts that may enrich for tumor initiating cells. To investigate these potential links between cellular metabolism and the tumor hierarchy, we will dissect the interplay between brain tumor initiating cells and the tumor microenvironment. In the first aim, we will determine the role of the stem cell metabolic responses in stress resistance. In the second aim, we will interrogate the role of post-translational modification of mitochondrial proteins in different tumor microenvironments enriched in tumor initiating cells through the use of regional biopsies from human patients and regionally specific SIRT3 modification in animal studies. Finally, we will investigate the potential synthetic lethality of targeting SIRT3 with chemotherapy and/or radiation. We will employ a series of models derived from human glioblastomas and epilepsy tissues to lay the foundation for advanced modeling of this lethal brain disease.
 描述(由申请人提供):人类大脑是代谢最活跃的器官之一,具有高效提取葡萄糖作为能量和碳源主要货币的能力。 通过表达高亲和力葡萄糖转运蛋白优先从营养受限的环境中吸收葡萄糖 最常见的原发性脑肿瘤,胶质母细胞瘤,是最致命的人类癌症之一,与正常大脑一样,胶质母细胞瘤也包含具有自我更新能力的细胞层次结构。这些脑肿瘤起始细胞位于顶端。 表现出治疗抗性,促进肿瘤血管生成,并侵入正常组织,为模拟其调节和制定靶向策略提供了理论依据。我们最近证明,脑肿瘤起始细胞通过共同选择表现出显着的生存能力,能够在肿瘤性脑中发现的营养水平降低的情况下生存。相比之下,非干细胞样肿瘤细胞在营养限制的情况下发生细胞死亡,并且存活细胞具有向干细胞样状态的细胞可塑性。与肿瘤细胞层次结构相关的分子机制,可以提供一个脆弱节点,因为靶向 GLUT3 表达会减少脑肿瘤启动细胞的自我更新和肿瘤生长,与所有癌症一样,胶质母细胞瘤表现出瓦伯格效应,即优先利用有氧糖酵解来提供能量。这种有氧糖酵解使细胞摆脱对氧气的需求,并提供稳定的合成代谢物质供应,但葡萄糖效率很高,需要稳定的葡萄糖供应,这表明了一种潜在的治疗方法。基于这一背景,我们努力优先使用葡萄糖衍生的碳主链进行大分子生物合成,使脑肿瘤起始细胞能够在细胞外能量应激下生存,并为这些细胞提供占据具有不同代谢限制的多种生态位的能力。抗血管生成贝伐单抗在肿瘤对治疗的初始反应中显示出希望,但未能延长生存期。研究表明,血管生成抑制剂耐药性与血管功能受损和可能丰富肿瘤的代谢变化有关。为了研究细胞代谢与肿瘤层级之间的潜在联系,我们将剖析脑肿瘤起始细胞与肿瘤微环境之间的相互作用。第一个目标是确定干细胞代谢反应在应激抵抗中的作用。在第二个目标中,我们将通过使用人类患者的区域活检和动物的区域特异性 SIRT3 修饰,探讨线粒体蛋白翻译后修饰在富含肿瘤起始细胞的不同肿瘤微环境中的作用。最后,我们将研究化疗和/或放疗靶向 SIRT3 的潜在综合致死率。我们将采用一系列源自人类胶质母细胞瘤和癫痫组织的模型,为这种致命性脑疾病的高级建模奠定基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jin Young Kim其他文献

Jin Young Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jin Young Kim', 18)}}的其他基金

Targeting TCA cycle in Brain Tumor Initiating Cells
靶向脑肿瘤起始细胞中的 TCA 循环
  • 批准号:
    9763503
  • 财政年份:
    2016
  • 资助金额:
    $ 0.64万
  • 项目类别:

相似国自然基金

基于PXDN-周细胞-血管渗漏轴探讨有氧运动改善肺血管重构机制研究
  • 批准号:
    82370422
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
代谢产物丁酸介导的PKM2乳酸化修饰调控小胶质细胞极化参与有氧运动发挥脑梗死后神经保护作用的机制研究
  • 批准号:
    82302861
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
有氧运动依赖ABCG1调节的GSK-3β/Nrf2/ARE抗氧化机制预防化疗药物5氟尿嘧啶诱导的血管内皮损伤机制探索
  • 批准号:
    82360608
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
NEDD4介导IGFBP7泛素化参与有氧运动抑制泛凋亡改善心肌缺血再灌注损伤的机制研究
  • 批准号:
    82302873
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
有氧康复运动抑制心外膜脂肪组织Th17细胞分化改善HFpEF所致心房颤动实验研究
  • 批准号:
    82372581
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Targeting cytochrome bd as an anti-biofilm strategy
靶向细胞色素 bd 作为抗生物膜策略
  • 批准号:
    10642243
  • 财政年份:
    2023
  • 资助金额:
    $ 0.64万
  • 项目类别:
Regulators of Photoreceptor Aerobic Glycolysis in Retinal Health and Disease
视网膜健康和疾病中光感受器有氧糖酵解的调节因子
  • 批准号:
    10717825
  • 财政年份:
    2023
  • 资助金额:
    $ 0.64万
  • 项目类别:
Mitigating Developmental Neurotoxicity Through Maternal and Offspring Exercise
通过母亲和后代运动减轻发育神经毒性
  • 批准号:
    10725969
  • 财政年份:
    2023
  • 资助金额:
    $ 0.64万
  • 项目类别:
Mechanistic Investigation of Copper-Dependent Peptide Cyclases for Macrocycle Engineering
用于大环工程的铜依赖性肽环化酶的机理研究
  • 批准号:
    10464289
  • 财政年份:
    2022
  • 资助金额:
    $ 0.64万
  • 项目类别:
Development of a carbon monoxide scavenging hemoprotein as a novel antidotal therapy to treat inhaled CO poisoning
开发一氧化碳清除血红蛋白作为治疗吸入性一氧化碳中毒的新型解毒疗法
  • 批准号:
    10387161
  • 财政年份:
    2022
  • 资助金额:
    $ 0.64万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了