Excitable Networks in Directed Cell Migration
定向细胞迁移中的兴奋网络
基本信息
- 批准号:9260912
- 负责人:
- 金额:$ 106.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:1-Phosphatidylinositol 3-KinaseAddressAdultBehaviorBiochemicalBiochemical GeneticsBiosensorCellsCellular MorphologyChemicalsChemotaxisCuesCultured CellsDevelopmentDiseaseDisseminated Malignant NeoplasmEmbryoEquilibriumEventFeedbackG-substrateGTP-Binding ProteinsGenesGenetic ScreeningGenetic screening methodHomologous GeneHumanIn VitroLeadLinkMammary glandMembraneMolecularMonitorMorphologyMovementMutationOncogenicOrganoidsPacemakersPathologyPathway interactionsPhosphatidylinositol 4,5-DiphosphatePhysiologicalPhysiologyPost-Translational Protein ProcessingProcessRoleSchemeSeriesSignal TransductionStimulusTextbookscancer cellcell motilitydesignenzyme activityexperimental studyfascinategenetic analysisinhibitor/antagonistmigrationneutrophilnovelnovel therapeutic interventionpublic health relevancereconstitutiontumorigenesis
项目摘要
DESCRIPTION (provided by applicant): Directed cell migration is vital in development and physiology and a potential point of vulnerability in numerous diseases, including metastatic cancer. The overall process is comprised of directional sensing, motility, and polarity. Whereas the textbook view implies that autonomous cytoskeletal activity underlies motility and that signal transduction events provide guidance, recent studies suggest that excitable behavior of the signal transduction network is an essential "pacemaker" that drives movement. Local modulation of this biochemical excitability by external gradients and internal polarity cues can guide cells and large global perturbations can have profound morphological consequences. We are addressing the important questions raised by this "biased excitable network" view of directed cell migration. What molecular mechanisms make the signal transduction network excitable? We are pursuing a working hypothesis that positive and delayed negative feedbacks, involving control of RasGTPase, PI 3- kinase, and PLC activities in local regions of the membrane, are the basis of excitability. We are using synthetic actuators, induced sequestration, and biosensors to perturb and monitor enzyme activities and membrane states to find the feedback loops. Initial experiments show that gradual decreases in PIP2 or increases in Ras signaling progressively cause cells to shift from amoeboid, to fan-like, to oscillatory, to persistently spread forms as would be expected if cell morphology is controlled by an excitable network. How can cells sense, integrate, and adapt to temporal and spatial cues? To explain how cells to respond to differences and adapt to uniform chemotactic stimuli, we proposed that a local excitation-global inhibition scheme biases the excitable network. To identify the inhibitor
that balances G-protein excitation, we are focusing on physiological relevant protein modifications, genetic screens, and in vitro reconstitution. What is the overall complexity of the chemotactic networks? In forward genetic screens, we have identified a large series of novel regulators of directed migration. With a combination of established biochemical and genetic analyses we are defining the links of these new genes to the existing networks and their roles in directional sensing, motility, and polarity. Many of these genes have human homologues that we will target in neutrophils and mammary cells to investigate effects on chemotaxis. How can these new concepts be exploited to control migration and target specific cells? We recently discovered that persistent activation of multiple parallel migration pathways causes cells to spread excessively, fragment, and die. Since many of these perturbations are also involved in oncogenesis, we are pursuing the admittedly unconventional concept that the most aggressive cancer cells can be targeted by even further activation. As proof of principle, we are testing genetic and chemical perturbations, which selectively target cultured cells with defined oncogenic mutations, in xenographs and organoids.
描述(由申请人提供):定向细胞迁移对于发育和生理学至关重要,也是许多疾病(包括转移性癌症)的潜在脆弱点。整个过程由定向传感、运动和极性自主细胞骨架活动组成。信号转导事件提供了指导,最近的研究表明信号转导网络的兴奋行为是驱动这种生化运动的重要“起搏器”。外部梯度和内部极性线索的兴奋性可以引导细胞,而大的全局扰动可以产生深远的形态学后果,我们正在解决这种定向细胞迁移的“偏向兴奋网络”观点所提出的重要问题。 ? 我们正在追求一个工作假设,即正反馈和延迟负反馈,涉及膜局部区域的 RasGTPase、PI 3-激酶和 PLC 活动的控制,是兴奋性的基础。使用合成执行器、诱导隔离和生物传感器来干扰和监测酶活性和膜状态,以找到反馈环路,初步实验表明,PIP2 的逐渐减少或 Ras 信号的增加会逐渐导致细胞从变形虫状转变为扇状。如果细胞形态由可兴奋的整合网络控制,那么细胞如何感知、整合和适应时间和空间线索?为了响应差异并适应均匀的趋化刺激,我们提出了一种局部兴奋-全局抑制方案来偏向可兴奋网络来识别抑制剂。
平衡 G 蛋白兴奋,我们关注的是生理相关的蛋白质修饰、遗传筛选和体外重建,在正向遗传筛选中,我们已经确定了一系列新型定向调节剂。通过结合已建立的生化和遗传分析,我们正在定义这些新基因与现有网络的联系及其在方向感测、运动和极性中的作用,其中许多基因具有我们将在中性粒细胞中定位的人类同源物。我们最近发现,多个平行迁移途径的持续激活会导致细胞过度扩散、破碎和死亡。扰动也参与肿瘤发生,我们正在追求公认的非常规概念,即可以通过进一步激活来靶向最具侵袭性的癌细胞。作为原理证明,我们正在测试遗传和化学扰动,这些扰动选择性地针对具有明确定义的培养细胞。异种移植和类器官中的致癌突变。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter N Devreotes其他文献
Peter N Devreotes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter N Devreotes', 18)}}的其他基金
ZEISS AXIOVERT 200-M FOR TIME-LAPSE MICROSCOPY: KIDNEY
用于延时显微镜的蔡司 AXIOVERT 200-M:肾脏
- 批准号:
7166649 - 财政年份:2005
- 资助金额:
$ 106.92万 - 项目类别:
ZEISS AXIOVERT 200-M FOR TIME-LAPSE MICROSCOPY: INFECTIOUS DISEASE
用于延时显微镜检查的蔡司 AXIOVERT 200-M:传染病
- 批准号:
7166648 - 财政年份:2005
- 资助金额:
$ 106.92万 - 项目类别:
ZEISS AXIOVERT 200-M FOR TIME-LAPSE MICROSCOPY: CANCER
用于延时显微镜的蔡司 AXIOVERT 200-M:癌症
- 批准号:
7166650 - 财政年份:2005
- 资助金额:
$ 106.92万 - 项目类别:
ZEISS AXIOVERT 200-M FOR TIME-LAPSE MICROSCOPY: CELL BIOLOGY
用于延时显微镜的蔡司 AXIOVERT 200-M:细胞生物学
- 批准号:
7166651 - 财政年份:2005
- 资助金额:
$ 106.92万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Investigating Resistance Mechanisms to Non-covalent Bruton's Tyrosine Kinase Inhibitors and Therapeutic Approaches to Overcome Resistance for Patients with B-Cell Malignancies
研究非共价布鲁顿酪氨酸激酶抑制剂的耐药机制以及克服 B 细胞恶性肿瘤患者耐药性的治疗方法
- 批准号:
10537252 - 财政年份:2022
- 资助金额:
$ 106.92万 - 项目类别:
The role of kidney epithelial cells specific EP4 receptors in blood pressure control
肾上皮细胞特异性EP4受体在血压控制中的作用
- 批准号:
10586944 - 财政年份:2022
- 资助金额:
$ 106.92万 - 项目类别:
Novel use of PI3K inhibition to prevent recurrence of B-cell acute lymphoblastic leukemia
PI3K 抑制预防 B 细胞急性淋巴细胞白血病复发的新用途
- 批准号:
10455633 - 财政年份:2021
- 资助金额:
$ 106.92万 - 项目类别:
Outer Membrane Proteins of Pathogenic Oral Treponemes Inhibit Actin Rearrangement and Antimicrobial Functions of Neutrophils
致病性口腔密螺旋体外膜蛋白抑制中性粒细胞肌动蛋白重排和抗菌功能
- 批准号:
10491690 - 财政年份:2021
- 资助金额:
$ 106.92万 - 项目类别:
Ac-SDKP in the Treatment of Cardiac Dysfunction in Hypertension or Ischemic
Ac-SDKP 治疗高血压或缺血性心脏功能障碍
- 批准号:
10336561 - 财政年份:2021
- 资助金额:
$ 106.92万 - 项目类别: