Optical Body Composition and Health Assessment

光学身体成分和健康评估

基本信息

项目摘要

 DESCRIPTION (provided by applicant):1 Of all markers of human health, the most intuitive is body shape but based on quantitative evidence. 2 Anthropometry and regional composition measures such as waist circumference (WC), waist to hip ratio 3 (WHR), and visceral adipose tissue area (VAT) are better predictors of obesity-related diseases and mortality 4 risk than body mass index (BMI). Dual-energy X-ray absorptiometry (DXA) can quantify regional adiposity in 5 more detail than the above measures but is underutilized for many reasons including potential harm from 6 ionizing radiation, cost, and training. A study is needed to take advantage of rapid technological developments 7 in the "quantified self movement" to better describe phenotypes of body shape and its relation to metabolic 8 risks. The candidate developed in this proposal is 3D optical whole body scanning. If successful, sophisticated 9 obesity phenotype profiles could be constructed to clarify the underlying associations of body composition with 10 disease, genetics, lifestyle exposures, metabolomics, and be highly assessable using self-assessment 11 technology. Whole body 3D imaging technology is already so accessible that it can be done with video games 12 such as the Microsoft Xbox Kinect, and consumer cameras. 13 The long term goal of the Optical Body Shape and Health Assessment Study is 1) to provide phenotype 14 descriptors of health using body shape, and 2) to provide the tools to visualize and quantify body shape in 15 research, clinical practice, and personal health assessment. Our overall approach is to first derive predictive 16 models of how body shape relates to regional and total body composition (subcutaneous fat, visceral fat, 17 muscle mass, lean mass, and percent fat), and then show how our 3DO body composition estimates are 18 associated to important metabolic risk factors. Our central hypothesis is that 3DO measures of body 19 composition with shape classification better predict metabolic risk factors than anthropometry or DXA body 20 composition alone. Our specific aims are: 1. Identify the unique associations of body shape to body 21 composition indices in a population that represents the variance of sex, age, BMI, and ethnicity found 22 in the US population; 2. Describe the precision and accuracy of 3DO scans to monitor change in body 23 composition and metabolic health interventions; and 3. Estimate the level of association of 3DO to 24 common health indicators including metabolic risk factors by gender, race, age, and BMI. In an 25 exploratory aim, we investigate holistic, high-resolution descriptors of 3D body shape as direct 26 predictors of body composition and metabolic risk using statistical shape models and Latent Class 27 Analysis. By the end of this study, we expect to have models of the shape and composition suitable for self- 28 assessment technologies that are capable of representing over 95% of the shape variance in the US 29 population, and how these models relate to important metabolic status and body composition. The positive 30 impact will be the immediate applicability to clinicians and individuals for personalized risk assessment.
 描述(申请人提供):1 在所有人类健康指标中,最直观的是体型,但基于定量证据。 2 人体测量和区域构成测量,例如腰围 (WC)、腰臀比 3 (WHR)、和内脏脂肪组织面积 (VAT) 比双能 X 射线吸收测定法 (DXA) 更能预测肥胖相关疾病和死亡 4 风险。区域性肥胖的量化 5 比上述措施更详细,但由于许多原因而未得到充分利用,包括 6 电离辐射、成本和培训的潜在危害,需要进行一项研究,以利用“量化自我运动”中的快速技术发展 7 来实现这一目标。更好地描述身体形状的表型及其与代谢 8 风险的关系。如果成功,可以构建复杂的 9 肥胖表型概况,以阐明身体成分与 10 种疾病的潜在关联。全身 3D 成像技术已经非常容易使用,可以通过 Microsoft Xbox Kinect 等视频游戏 12 和消费者相机 13 来完成。光学体形和健康评估研究的长期目标是 1) 使用体形提供健康的表型 14 描述符,以及 2) 提供可视化和量化 15 体形的工具我们的总体方法是首先推导出 16 个体形与局部和全身成分(皮下脂肪、内脏脂肪、17 肌肉质量、瘦体重和脂肪百分比)之间关系的预测模型,然后显示我们的 3DO 身体成分估计值如何与重要的代谢风险因素相关 18 我们的中心假设是,与单独的人体测量或 DXA 身体成分相比,通过形状分类对身体 19 成分进行 3DO 测量可以更好地预测代谢风险因素。具体目标是: 1. 确定人群中体型与身体 21 组成指数的独特关联,这些指数代表了美国人口中性别、年龄、BMI 和种族的差异 22 2. 描述 3DO 的精度和准确度;扫描以监测身体 23 成分的变化和代谢健康干预措施;以及 3. 估计 3DO 与 24 项常见健康指标(包括按性别、种族、年龄和 BMI 划分的代谢风险因素)的关联水平。为了探索性目标,我们使用统计形状模型和潜在 27 类分析来研究 3D 身体形状的整体、高分辨率描述符,作为身体成分和代谢风险的直接预测因子。在本研究结束时,我们期望拥有形状模型。 28 适合自我评估的技术能够代表美国 29 人口 95% 以上的体型差异,以及这些模型如何与重要的代谢状态和身体成分相关联 30 将会产生积极的影响。立即适用于受惠者和个人进行个性化风险评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Heymsfield其他文献

Steven Heymsfield的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Heymsfield', 18)}}的其他基金

CANCAN - PENNINGTON
康康 - 彭宁顿
  • 批准号:
    10625678
  • 财政年份:
    2022
  • 资助金额:
    $ 65.18万
  • 项目类别:
Quantifying body shape in pediatric clinical research
量化儿科临床研究中的体形
  • 批准号:
    10299250
  • 财政年份:
    2021
  • 资助金额:
    $ 65.18万
  • 项目类别:
Quantifying body shape in pediatric clinical research
量化儿科临床研究中的体形
  • 批准号:
    10641835
  • 财政年份:
    2021
  • 资助金额:
    $ 65.18万
  • 项目类别:
Shape up! Kids
塑造!
  • 批准号:
    9220287
  • 财政年份:
    2017
  • 资助金额:
    $ 65.18万
  • 项目类别:

相似国自然基金

基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
  • 批准号:
    82372499
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
  • 批准号:
    82373465
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
  • 批准号:
    82300208
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
  • 批准号:
    82302025
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
  • 批准号:
    82302160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mechanisms of adipocyte loss in mouse models of familial partial lipodystrophy 2
家族性部分脂肪营养不良小鼠模型脂肪细胞丢失的机制2
  • 批准号:
    10748790
  • 财政年份:
    2023
  • 资助金额:
    $ 65.18万
  • 项目类别:
Identification of lung resident innate lymphocytes that specifically protect neonates from SARS-CoV-2 infections
鉴定可特异性保护新生儿免受 SARS-CoV-2 感染的肺固有淋巴细胞
  • 批准号:
    10742495
  • 财政年份:
    2023
  • 资助金额:
    $ 65.18万
  • 项目类别:
The Influence of Developmental Exposure to Maternal Overnutrition and Metformin on Offspring Mitochondrial Health and Beta Cell Function
发育期暴露于母亲营养过剩和二甲双胍对后代线粒体健康和 β 细胞功能的影响
  • 批准号:
    10601500
  • 财政年份:
    2023
  • 资助金额:
    $ 65.18万
  • 项目类别:
Prolactin receptor signaling regulates adaptation of the heart during pregnancy and postpartum
催乳素受体信号传导调节怀孕和产后心脏的适应
  • 批准号:
    10662892
  • 财政年份:
    2023
  • 资助金额:
    $ 65.18万
  • 项目类别:
Predictors of Youth-Onset Type 2 Diabetes: UAB Clinical Center
青年发病 2 型糖尿病的预测因子:UAB 临床中心
  • 批准号:
    10582927
  • 财政年份:
    2023
  • 资助金额:
    $ 65.18万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了