Project 2: Defining Targetable Metabolic Dependencies in Human Renal Cell Carcinoma
项目 2:定义人类肾细胞癌的靶向代谢依赖性
基本信息
- 批准号:10708840
- 负责人:
- 金额:$ 33.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBypassCarbonCathepsinsCell physiologyCellsCitric Acid CycleClear CellClear cell renal cell carcinomaClinicCollaborationsCytotoxic T-LymphocytesDataDependenceDrug TargetingEnzymesEquilibriumEventFailureGenerationsGerm-Line MutationGlucoseGlutaminaseGlutamineGlycogenGrowthHumanImmuneImmunocompetentImplantInfusion proceduresInterventionKnowledgeLabelLinkLipidsMalignant NeoplasmsMediatingMedical centerMetabolicMetabolic PathwayMetabolismMitochondriaModelingMusNeoplasm MetastasisNitrogenNon-MalignantNutrientOxidation-ReductionOxidative Phosphorylation DeficiencyPathway interactionsPatientsPharmacologic SubstancePhenotypePredispositionProcessReactionRenal Cell CarcinomaRenal carcinomaReportingResistanceRoleSourceTestingTexasTherapeuticTranslatingTumor PromotionTumor TissueUniversitiescell typedrug developmentgenetic approachin vivoinhibitorinnovationinsightmetabolomicsmouse modelneoplastic cellnext generationnitrogen metabolismnovelnovel strategiesoxidationsmall moleculetherapeutic targettreatment responsetumortumor growthtumor metabolismtumor microenvironmenttumorigenesis
项目摘要
Project Summary
Metabolic reprogramming in cancer is an attractive source of therapeutic targets because it fuels tumor growth
and metastasis through enzymes that are in principle amenable to inhibition with small molecules. Metabolic
reprogramming is intrinsic to renal cell carcinoma (RCC). In fact, few tumors are as profoundly linked to metabolic
derangement as RCC and in particular, clear cell RCC (ccRCC). This is shown by: the clear cell phenotype,
which arises from lipid/glycogen accumulation; direct metabolic reprogramming by the ccRCC signature event,
VHL inactivation; and the observation that germline mutations in metabolic enzymes cause RCC, but few other
tumor types. The two main barriers to targeting metabolic reprograming are the lack of knowledge about RCC
metabolism in patients and the absence of validated translational platforms. To address these challenges, we
executed 5 major activities in Years 1 – 5. First, we pioneered intraoperative infusions of 13C-labeled nutrients in
patients to directly report on RCC metabolism in humans, which revealed, among others, suppressed glucose
oxidation. Second, we showed, mechanistically, that suppressed glucose oxidation is due to deficient oxidative
phosphorylation. Third, we determined that additive-free, orthotopically implanted, patient tumors (tumorgrafts,
TG) are valid models to study human RCC metabolism. Fourth, we established the In Vivo Metabolism Lab,
an innovative translational platform to detect metabolic reprogramming in human tumors, nominate therapeutic
strategies, test them in TG models and primary human tumor tissue, and advance the most promising leads.
Fifth, we demonstrated that both primary ccRCC tumors and metastases use glutamine to maintain redox
balance and produce essential biosynthetic intermediates. Building upon discoveries by us and others implicating
glutamine in cancer, the CB-839 glutaminase inhibitor was developed. However, results in ccRCC trials have
been disappointing. One possible explanation is that glutaminase is only one of several enzymes that catabolize
glutamine. Our new data not only explain CB-839 lack of efficacy, but also identify new opportunities for
intervention. Indeed, while CB-839 inhibits carbon metabolism by targeting glutaminase, glutamine is also a
source of nitrogen in RCC, which is processed via amidotransferases, which are not inhibited by CB-839. In
preliminary data, we show that pan-glutamine inhibition with JHU-083 not only effectively inhibits
amidotransferase reactions, but also significantly blocks ccRCC TG growth. To advance effective glutamine
targeting to the clinic, in Years 6 – 10, we will pursue the following Aims. Aim 1. Probing the role of
amidotransferases in mediating resistance to CB-839 glutaminase inhibitor. Aim 2. Targeting IDH enzymes to
maximize glutamine blockade. Aim 3. To maximize the impact of glutamine targeting by leveraging the tumor
microenvironment using next-generation models.
项目概要
癌症中的代谢重编程是一个有吸引力的治疗靶点来源,因为它促进肿瘤生长
以及通过酶的转移,这些酶原则上可以用小分子抑制。
重编程是肾细胞癌 (RCC) 所固有的。事实上,很少有肿瘤与代谢有如此密切的联系。
RCC 紊乱,特别是透明细胞 RCC (ccRCC),这通过以下方式显示:透明细胞表型,
由脂质/糖原积累引起;由 ccRCC 特征事件直接代谢重编程,
VHL 失活;以及观察到代谢酶的种系突变导致 RCC,但很少有其他原因
靶向代谢重编程的两个主要障碍是缺乏对肾细胞癌的了解。
患者的新陈代谢和缺乏经过验证的转化平台为了应对这些挑战,我们。
在第 1 – 5 年执行了 5 项主要活动。首先,我们率先在术中输注 13C 标记的营养物质
患者直接报告人类肾细胞癌代谢,其中揭示了葡萄糖抑制等
其次,我们从机制上表明,抑制葡萄糖氧化是由于氧化不足。
第三,我们确定了无添加剂、原位植入的患者肿瘤(肿瘤移植物、
第四,我们建立了体内代谢实验室,
一个创新的转化平台,用于检测人类肿瘤中的代谢重编程,指定治疗方法
策略,在 TG 模型和原发性人类肿瘤组织中对其进行测试,并推进最有希望的线索。
第五,我们证明原发性 ccRCC 肿瘤和转移瘤都使用谷氨酰胺来维持氧化还原
基于我们和其他相关人员的发现,平衡并生产必需的生物合成中间体。
谷氨酰胺在癌症中的作用,开发了 CB-839 谷氨酰胺酶抑制剂,但 ccRCC 试验已取得结果。
一种可能的解释是,谷氨酰胺酶只是分解代谢的几种酶之一。
我们的新数据不仅解释了 CB-839 缺乏功效,而且还发现了新的机会。
事实上,虽然 CB-839 通过靶向谷氨酰胺酶来抑制碳代谢,但谷氨酰胺也是一种干预措施。
RCC 中的氮源,通过酰胺基转移酶进行加工,CB-839 不会抑制该酶。
初步数据显示,JHU-083 的泛谷氨酰胺抑制不仅有效地抑制
酰胺转移酶反应,还显着阻止 ccRCC TG 生长,以促进有效的谷氨酰胺的生长。
以临床为目标,在第 6-10 年,我们将追求以下目标 1. 探索的作用。
酰胺转移酶介导对 CB-839 谷氨酰胺酶抑制剂的耐药性 目标 2. 将 IDH 酶靶向作用于 CB-839 谷氨酰胺酶抑制剂。
目标 3. 通过利用肿瘤来最大化谷氨酰胺靶向的影响。
使用下一代模型的微环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RALPH J DEBERARDINIS其他文献
RALPH J DEBERARDINIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RALPH J DEBERARDINIS', 18)}}的其他基金
Metabolic Regulators of Tumor Growth and Progression
肿瘤生长和进展的代谢调节因子
- 批准号:
10472535 - 财政年份:2017
- 资助金额:
$ 33.93万 - 项目类别:
Metabolic Regulators of Tumor Growth and Progression
肿瘤生长和进展的代谢调节因子
- 批准号:
9762588 - 财政年份:2017
- 资助金额:
$ 33.93万 - 项目类别:
Metabolic Regulators of Tumor Growth and Progression
肿瘤生长和进展的代谢调节因子
- 批准号:
10238924 - 财政年份:2017
- 资助金额:
$ 33.93万 - 项目类别:
Metabolic Regulators of Tumor Growth and Progression
肿瘤生长和进展的代谢调节因子
- 批准号:
9389673 - 财政年份:2017
- 资助金额:
$ 33.93万 - 项目类别:
Human metabolic variation as a window into cancer initiation and progression
人类代谢变异是了解癌症发生和进展的窗口
- 批准号:
10736053 - 财政年份:2017
- 资助金额:
$ 33.93万 - 项目类别:
Project 3: Clinically Actionable Biomarkers from Renal Cell Carcinoma Metabolism and Imaging
项目 3:肾细胞癌代谢和影像学中临床可行的生物标志物
- 批准号:
9071072 - 财政年份:2016
- 资助金额:
$ 33.93万 - 项目类别:
相似国自然基金
HMGCS1介导的旁路酮体生成在KRAS突变型肠癌中的作用机制及应用研究
- 批准号:82303626
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
星形胶质细胞Ang-(1-7)/Mas旁路活化抑制神经元tau病理的机制研究
- 批准号:82301609
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
紧密连接蛋白ZO-1介导蛋清活性肽细胞旁路吸收的分子机制
- 批准号:32372375
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于肿瘤类器官探讨α2δ1通过旁路激活途径调控头颈部鳞癌EGFR靶向药耐药的机制研究
- 批准号:82303642
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ALDH3A2旁路激活NRF2促进GGN中巨噬细胞铁死亡抵抗的机制研究
- 批准号:82370002
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Mild Strategies in the Direct Generation of Carbocation Intermediates from C(sp3)–H Bonds.
从 C(sp3)–H 键直接生成碳正离子中间体的温和策略。
- 批准号:
10802699 - 财政年份:2022
- 资助金额:
$ 33.93万 - 项目类别:
Early-Stage Preclinical Validation of Carbon Monoxide Prodrugs for Acute Kidney Injury
一氧化碳前药治疗急性肾损伤的早期临床前验证
- 批准号:
10525896 - 财政年份:2022
- 资助金额:
$ 33.93万 - 项目类别:
Mild Strategies in the Direct Generation of Carbocation Intermediates from C(sp3)–H Bonds
从 C(sp3)–H 键直接生成碳正离子中间体的温和策略
- 批准号:
10659213 - 财政年份:2022
- 资助金额:
$ 33.93万 - 项目类别:
Early-Stage Preclinical Validation of Carbon Monoxide Prodrugs for Acute Kidney Injury
一氧化碳前药治疗急性肾损伤的早期临床前验证
- 批准号:
10665011 - 财政年份:2022
- 资助金额:
$ 33.93万 - 项目类别:
Silver Carboxylate-Eluting Titanium Dioxide/Polydimethyl Siloxane Antibiotic-Independent Antimicrobial Coating as a Safe and Efficacious Alternative for Antibiotic Resistance
羧酸银洗脱二氧化钛/聚二甲基硅氧烷不依赖抗生素的抗菌涂层作为抗生素耐药性的安全有效替代品
- 批准号:
10374141 - 财政年份:2021
- 资助金额:
$ 33.93万 - 项目类别: