Merging machine learning and mechanistic models to improve prediction and inference in emerging epidemics
融合机器学习和机械模型以改进对新兴流行病的预测和推理
基本信息
- 批准号:10709474
- 负责人:
- 金额:$ 45.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AfricanAlgorithmsAreaCOVID-19COVID-19 pandemicCholeraCholera VaccineCommunicable DiseasesCommunity HealthDataData SetDecision AnalysisDecision MakingDecision TheoryDiseaseDisease OutbreaksEbolaEmerging Communicable DiseasesEnsureEpidemicEvaluationFogsFutureGeographic LocationsIncidenceInternationalInterventionKnowledgeLiberiaLifeLinkLocationMachine LearningMethodsModelingMorbidity - disease rateOnline SystemsOralPoliciesPublic HealthResearchResearch PersonnelSeriesShapesStatistical AlgorithmStatistical MethodsStatistical ModelsSystemTimeTranslatingUpdateWarWorkYemencase-basedcostcurve fittingdashboarddisease transmissionepidemic responseexperienceflexibilityimprovedinnovationmortalitymultidimensional datanew epidemicoutbreak responseprogramsprospectiveresponsesimulationsoundsurveillance datatheoriestooltransmission processuser-friendly
项目摘要
PROJECT SUMMARY
When an outbreak of an established or emerging infectious disease occurs we ask a standard set of questions
that are critical to a lifesaving public health response: Where will future incidence occur? How many cases will
there be? And where can we most effectively intervene? The proposed research is motivated by real world
instances where answering these questions was critical to making practical public health decisions, and current
methods came up short: from deciding if and where to build additional Ebola Treatment Units in the 2014-15
West African Ebola epidemic, to identifying priority districts where oral cholera vaccine should be used in the
2016-17 cholera outbreak in Yemen, to picking locations where sufficient cases might occur to selecting and
prioritizing interventions to slow the spread of COVID-19 worldwide. Forecasts informing such decisions are
typically generated either using an epidemic model that relies on knowledge of the disease transmission
mechanism and epidemic theory or using a statistical model to project the expected number of cases based on
the relationship between covariates and observed counts. However, both approaches are subject to limitations,
particularly early in an epidemic when few cases are observed. This project is based on the overarching
scientific premise that inferences that combine the strengths of mechanistic epidemic models and statistical
covariate models will substantially outperform either approach alone in forecasting and making decisions to
confront emerging infectious disease threats. Specifically, this project aims to (1) Develop a framework to
forecast incidence in ongoing outbreaks that merges mechanistic and machine learning approaches;
(2) Validate the framework using retrospective data and apply the framework to inform decision making
in emerging epidemics; (3) Integrate this inferential forecasting framework into causal decision theory
to optimize critical actions in the public health response to emerging epidemics; and (4) Develop
accessible and extensible tools for forecasting and decision analysis in infectious disease epidemics.
We will validate these approaches using rigorous simulation studies and by applying the proposed approaches
to retrospective data from important recent epidemics (e.g., Ebola, Cholera and COVID-19, as mentioned
above). We will prospectively apply our approach to inform the response to emerging disease threats that
occur during the project period, including the ongoing COVID-19 pandemic. To ensure that the tools developed
are useful, efficient, and user friendly, we will work with international humanitarian organizations responding to
epidemics. Successful completion of these aims will provide a flexible and validated framework for forecasting
and decision making during ongoing epidemics, while allowing for innovation in mechanistic and statistical
approaches. In doing so it will provide tools to optimize responses and reduce morbidity and mortality during
public health crises.
项目摘要
当发生已建立或新兴的传染病的爆发时,我们提出了一组标准的问题
对于救生的公共卫生反应至关重要的:未来会发生在哪里?多少个案件
有?我们在哪里可以最有效地干预?拟议的研究是由现实世界的动机
回答这些问题对于做出实际公共卫生决策至关重要的情况和当前
方法很短:从决定是否以及在2014 - 15年度建造其他埃博拉治疗单元
西非埃博拉病毒的流行,以确定应使用口腔霍乱疫苗的优先区
2016-17也门霍乱疫情,选择可能发生足够案例的地点
优先考虑干预措施,以减缓世界各地的Covid-19的蔓延。告知此类决定的预测是
通常使用依赖疾病传播知识的流行病模型生成
机制和流行论或使用统计模型来投射基于的预期案例数
协变量与观察到的计数之间的关系。但是,两种方法都受到限制,
尤其是在几例病例时在流行病的早期。该项目基于总体
科学前提是将机械流行模型和统计学强度相结合的推论
协变量模型将在预测中单独胜过任何方法,并做出决定
面对新兴的传染病威胁。具体而言,该项目旨在(1)开发一个框架
预测在持续的爆发中,将机械和机器学习方法融合在一起;
(2)使用回顾性数据验证框架并应用框架为决策提供信息
在新兴的流行病中; (3)将这个推论预测框架整合到因果决策理论中
在公共卫生对新兴流行病的反应中优化关键行动; (4)发展
可访问且可扩展的工具,用于传染病流行病的预测和决策分析。
我们将使用严格的模拟研究验证这些方法,并应用所提出的方法
从重要的最近流行病(例如埃博拉,霍乱和库维德19号)回顾性数据,如前所述
多于)。我们将前瞻性地采用我们的方法来告知对新兴疾病威胁的反应
在项目期间发生,包括正在进行的Covid-19-大流行。确保工具开发
我们将与国际人道主义组织合作,有用,高效且用户友好
流行病。这些目标的成功完成将为预测提供灵活且经过验证的框架
以及在持续流行期间的决策,同时允许在机械和统计上进行创新
方法。这样一来,它将提供优化反应并降低发病率和死亡率的工具
公共卫生危机。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessie Edwards其他文献
Jessie Edwards的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessie Edwards', 18)}}的其他基金
Merging machine learning and mechanistic models to improve prediction and inference in emerging epidemics
融合机器学习和机械模型以改进对新兴流行病的预测和推理
- 批准号:
10334519 - 财政年份:2021
- 资助金额:
$ 45.9万 - 项目类别:
Merging machine learning and mechanistic models to improve prediction and inference in emerging epidemics
融合机器学习和机械模型以改进对新兴流行病的预测和推理
- 批准号:
10539401 - 财政年份:2021
- 资助金额:
$ 45.9万 - 项目类别:
Comparative effectiveness of tailored HIV treatment plans and mortality
定制的艾滋病毒治疗计划和死亡率的比较效果
- 批准号:
9270331 - 财政年份:2016
- 资助金额:
$ 45.9万 - 项目类别:
Comparative effectiveness of tailored HIV treatment plans and mortality
定制的艾滋病毒治疗计划和死亡率的比较效果
- 批准号:
10062470 - 财政年份:2016
- 资助金额:
$ 45.9万 - 项目类别:
相似国自然基金
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
感兴趣区域驱动的主动式采样CT成像算法研究
- 批准号:62301532
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Building predictive algorithms to identify resilience and resistance to Alzheimer's disease
构建预测算法来识别对阿尔茨海默病的恢复力和抵抗力
- 批准号:
10659007 - 财政年份:2023
- 资助金额:
$ 45.9万 - 项目类别:
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
- 批准号:
10667903 - 财政年份:2023
- 资助金额:
$ 45.9万 - 项目类别:
Clinical decision support algorithm to optimize management of respiratory tract infection in children attending primary health facilities in Kilimanjaro Region, Tanzania
用于优化坦桑尼亚乞力马扎罗地区初级卫生机构儿童呼吸道感染管理的临床决策支持算法
- 批准号:
10734148 - 财政年份:2023
- 资助金额:
$ 45.9万 - 项目类别:
Early Cognitive Impairment as a function of Alzheimer's Disease and Trauma
阿尔茨海默病和创伤导致的早期认知障碍
- 批准号:
10479319 - 财政年份:2023
- 资助金额:
$ 45.9万 - 项目类别:
Moving Beyond the Individual- A Data-driven Approach to Improving the Evidence on the Role of Community and Societal Determinants of HIV among Adolescent Girls and Young Women in Sub-Saharan Africa
超越个人——采用数据驱动的方法来改善关于艾滋病毒在撒哈拉以南非洲地区少女和年轻妇女中的社区和社会决定因素的作用的证据
- 批准号:
10619319 - 财政年份:2023
- 资助金额:
$ 45.9万 - 项目类别: