The mechanochemical control of T-cell directional migration under flow
流动下T细胞定向迁移的机械化学控制
基本信息
- 批准号:9288617
- 负责人:
- 金额:$ 41.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAddressAdhesionsAdhesivesAutomobile DrivingCell Adhesion MoleculesCell LineCell TherapyCellsCommunicable DiseasesCommunicationCouplingCytoskeletonDependenceDependencyEngineeringEventExhibitsGenerationsGoalsHomingHumanImmuneImmune systemInflammationInflammatoryIntegrin alpha4beta1IntegrinsIntercellular adhesion molecule 1LeadLigandsLigationLymphLymphoidMalignant NeoplasmsMeasuresMechanicsMemoryMethodsMicrofabricationMolecularMotionOrganPharmacological TreatmentProcessProteinsResearch PersonnelSalmonSignal PathwaySignal TransductionSiteSurfaceSwimmingSystemT cell responseT cell therapyT-LymphocyteTestingTimeVascular Cell Adhesion Molecule-1Very Late Antigen ReceptorsWorkadaptive immune responsebiophysical toolscell motilitychimeric antigen receptordetectordifferential expressiondirectional cellfascinateimaging modalityimprovedlymph flowmigrationmucosal addressin cell adhesion molecule-1novelnovel therapeutic interventionpolydimethylsiloxanepolymerizationreceptorresponsetherapeutic developmenttooltrafficking
项目摘要
The mechanochemical control of T-cell directional migration under flow
Daniel A. Hammer (PI) and Janis K. Burkhardt (co-Investigator)
Project Summary
T-lymphocytes are key players in the adaptive immune response, and motility is critical to their function. T-
cells are equipped with multiple different adhesion molecules that interact with ligands that are expressed
differentially throughout the immune system. Furthermore, T-cells often must act under an imposed flow field
as they traffic through the vasculature and lymphic system. Our goal is to understand how T-cells respond to
the different adhesion ligands and shear rates they encounter to effectively migrate to sites of inflammation and
immune communication. Understanding this process at the molecular level is important for development of
therapeutic strategies to treat inflammatory and infectious diseases, and cancer
Recently, we have discovered that directional T-cell migration varies as a function of the type of ligand they
encounter and the shear rate to which they are exposed. When placed on a surface bearing vascular cell
adhesion molecule-1 (VCAM-1), which engages the 1-integrin receptor VLA-4, T-cells crawl downstream
under flow (in the direction of flow). However, when placed on a surface bearing intercellular adhesion
molecule-1 (ICAM-1), which engages the 2-receptor LFA-1, T-cells crawl against the direction of flow, like a
salmon swims upstream. The magnitude of upstream migration depends on shear rate, with T-cells more
committed to upstream migration as the shear rate increases. On surfaces in which adhesion molecules are
mixed, any amount of ICAM-1 supports upstream migration. When the flow is removed, T-cells exhibit
migrational memory, but only if they have been exposed to both ICAM-1 and VCAM-1. This observation points
to a novel mechanism of crosstalk between two distinct integrin receptors.
We propose to investigate the mechanisms that drive the upstream migration of T-cells under flow on
ICAM-1, and the origins of migrational memory. We hypothesize that upstream migration is caused by 2
integrin forming a catch bond, which holds the cell in place while signals generated by integrin ligation
strengthen adhesive interactions and spur the polymerization of actin at the leading edge, driving forward
migration. To test this, we will use molecular engineering, flow chambers, micropatterned surfaces, and
microfabricated post array detectors (mPADs) to measure forces exerted by the migrating cell. We have
preliminary evidence that other motile amoeboid cells such as the immortalized KG1a cell line display the
same phenomenon, facilitating our use of molecular engineering tools and imaging methods to identify the
relevant molecules. By dissecting the mechanisms that underlie this fascinating phenomenon, we expect to
elucidate key features of integrin-dependent T cell trafficking. Our aims in this work are to: 1. Measure the
dynamics of T-cell and KG1a directional motion and migrational memory; 2. Identify the signals and clutch
molecules responsible for the differential migration under flow in response to 1 and 2 integrin ligands; and 3.
Measure the mechanisms of force generation when T-cells spread and crawl directionally on integrin ligands.
流动下T细胞定向迁移的机械化学控制
Daniel A. Hammer (PI) 和 Janis K. Burkhardt(联合研究员)
项目概要
T 淋巴细胞是适应性免疫反应的关键参与者,其运动性对其功能至关重要。
细胞配备有多种不同的粘附分子,可与表达的配体相互作用
此外,T 细胞通常必须在强加的流场下发挥作用。
当它们穿过脉管系统和淋巴系统时,我们的目标是了解 T 细胞如何反应。
它们遇到的不同粘附配体和剪切速率有效地迁移到炎症部位
在分子水平上理解这一过程对于免疫通讯的发展很重要。
治疗炎症和传染病以及癌症的策略
最近,我们发现定向 T 细胞迁移随配体类型的变化而变化。
当放置在带有血管细胞的表面上时,它们会遇到和所暴露的剪切速率。
粘附分子-1 (VCAM-1),与 1-整合素受体 VLA-4 结合,T 细胞向下游爬行
然而,当放置在具有细胞间粘附的表面时。
分子 1 (ICAM-1) 与 2 受体 LFA-1 结合,T 细胞逆流向爬行,就像
鲑鱼向上游游动的程度取决于剪切率,其中T细胞更多。
随着剪切速率的增加,在粘附分子所在的表面上发生向上游迁移。
混合后,任何数量的 ICAM-1 都支持上游迁移。当流动被移除时,T 细胞就会表现出来。
迁移记忆,但前提是他们同时接触过 ICAM-1 和 VCAM-1 这个观察点。
两个不同的整合素受体之间串扰的新机制。
我们建议研究驱动 T 细胞在流动下向上游迁移的机制
ICAM-1,以及迁移记忆的起源,我们发现上游迁移是由 2 引起的。
整合素形成捕获键,将细胞固定在适当的位置,同时整合素连接产生信号
加强粘附相互作用并刺激前沿肌动蛋白的聚合,推动前进
为了测试这一点,我们将使用分子工程、流动室、微图案表面和
我们有微型柱阵列探测器(mPAD)来测量迁移细胞施加的力。
初步证据表明其他运动变形虫细胞(例如永生化 KG1a 细胞系)显示出
同样的现象,有助于我们使用分子工程工具和成像方法来识别
通过剖析这一令人着迷的现象背后的机制,我们期望能够
阐明整合素依赖性 T 细胞运输的关键特征 我们这项工作的目标是: 1. 测量
T细胞和KG1a的定向运动和迁移记忆的动力学;2.识别信号和离合器;
负责响应 1 和 2 整合素配体的流动下差异迁移的分子;以及 3.
测量 T 细胞在整合素配体上定向扩散和爬行时产生力的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel A Hammer其他文献
A microfluidic platform for the synthesis of polymer and polymer-protein-based protocells
用于合成聚合物和聚合物蛋白原细胞的微流体平台
- DOI:
10.1140/epje/s10189-024-00428-5 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:0
- 作者:
Jessica Ann O'Callaghan;Neha P Kamat;Kevin B Vargo;Rajarshi Chattaraj;Daeyeon Lee;Daniel A Hammer - 通讯作者:
Daniel A Hammer
Determinants that enable disordered protein assembly into discrete condensed phases.
使无序蛋白质组装成离散凝聚相的决定因素。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:21.8
- 作者:
Rachel M Welles;Kandarp A. Sojitra;Mikael V. Garabedian;Boao Xia;Wentao Wang;Muyang Guan;R. M. Regy;Elizabeth R. Gallagher;Daniel A Hammer;J. Mittal;Matthew C. Good - 通讯作者:
Matthew C. Good
Asymmetry-Enhanced Motion of Urease-Powered Micromotors from Double Emulsion-Templated Microcapsules.
来自双乳液模板微胶囊的脲酶驱动微电机的不对称增强运动。
- DOI:
10.1021/acsami.3c10222 - 发表时间:
2023-10-30 - 期刊:
- 影响因子:9.5
- 作者:
Jessica Ann O'Callaghan;Daeyeon Lee;Daniel A Hammer - 通讯作者:
Daniel A Hammer
Daniel A Hammer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel A Hammer', 18)}}的其他基金
Controlling the upstream migration of neutrophils by manipulating the function of Mac-1 and LFA-1
通过操纵Mac-1和LFA-1的功能来控制中性粒细胞的上游迁移
- 批准号:
10616779 - 财政年份:2022
- 资助金额:
$ 41.69万 - 项目类别:
Functionalized lipid inactosomes to bind and clear SARS-CoV-2
功能化脂质内切体结合并清除 SARS-CoV-2
- 批准号:
10370745 - 财政年份:2022
- 资助金额:
$ 41.69万 - 项目类别:
Controlling the upstream migration of neutrophils by manipulating the function of Mac-1 and LFA-1
通过操纵Mac-1和LFA-1的功能来控制中性粒细胞的上游迁移
- 批准号:
10446740 - 财政年份:2022
- 资助金额:
$ 41.69万 - 项目类别:
Functionalized lipid inactosomes to bind and clear SARS-CoV-2
功能化脂质内切体结合并清除 SARS-CoV-2
- 批准号:
10611896 - 财政年份:2022
- 资助金额:
$ 41.69万 - 项目类别:
Controlling the Upstream Migration of Neutrophils through the Modulation of Mac-1
通过Mac-1的调节控制中性粒细胞的上游迁移
- 批准号:
9756062 - 财政年份:2019
- 资助金额:
$ 41.69万 - 项目类别:
The mechanochemical control of T-cell directional migration under flow
流动下T细胞定向迁移的机械化学控制
- 批准号:
9752590 - 财政年份:2017
- 资助金额:
$ 41.69万 - 项目类别:
Using micropost arrays to measure traction forces during dendritic cell motility
使用微柱阵列测量树突状细胞运动过程中的牵引力
- 批准号:
9058548 - 财政年份:2013
- 资助金额:
$ 41.69万 - 项目类别:
Using micropost arrays to measure traction forces during dendritic cell motility
使用微柱阵列测量树突状细胞运动过程中的牵引力
- 批准号:
8583289 - 财政年份:2013
- 资助金额:
$ 41.69万 - 项目类别:
Mechano-dynamics of the Transition to Firm Adhesion and MoIotility in Neutrophils
中性粒细胞向牢固粘附和运动性转变的机械动力学
- 批准号:
8006825 - 财政年份:2010
- 资助金额:
$ 41.69万 - 项目类别:
Integrated Multi-scale Adhesive Dynamics Modeling of T-lymphocyte Homing
T 淋巴细胞归巢的集成多尺度粘附动力学建模
- 批准号:
8635275 - 财政年份:2009
- 资助金额:
$ 41.69万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mechanical Modulation of Cell Migrations by DNA Nanoassemblies
DNA 纳米组件对细胞迁移的机械调节
- 批准号:
10659333 - 财政年份:2023
- 资助金额:
$ 41.69万 - 项目类别:
Understanding A Molecular Cascade That Drives Neutrophil Mediated Pathology In Arthritis
了解驱动中性粒细胞介导的关节炎病理学的分子级联
- 批准号:
10658202 - 财政年份:2023
- 资助金额:
$ 41.69万 - 项目类别:
Cytoskeleton-mediated regulation of insulin secretion hot spots in pancreatic beta cells
细胞骨架介导的胰腺β细胞胰岛素分泌热点的调节
- 批准号:
10679903 - 财政年份:2023
- 资助金额:
$ 41.69万 - 项目类别:
Predictive multi-scale model of focal adhesion-based durotaxis
基于粘着斑的 durotaxis 的预测多尺度模型
- 批准号:
10562825 - 财政年份:2023
- 资助金额:
$ 41.69万 - 项目类别: