Actin filaments and microtubulus
肌动蛋白丝和微管
基本信息
- 批准号:9207458
- 负责人:
- 金额:$ 14.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-01-15 至 2018-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgeAreaAxonBehaviorBiochemistryBiophysicsBiosensorBone DevelopmentBrain DiseasesCellsComputer SimulationDevelopmentDiseaseElectric ConductivityElectric StimulationElectrophysiology (science)ElectrostaticsEnvironmentFilamentFunctional disorderGrowthKnowledgeMathematicsMembraneMicrofilamentsMicrotubulesModelingMolecularMolecular ConformationNeuronsOutcomePatientsPhysiologicalProcessPropertyProteinsReportingResearchSignal TransductionStructureTissuesbiophysical analysisclinical applicationcomputerized toolscytotoxicityfrontierinformation processingmigrationnovelnovel therapeuticspublic health relevancerelating to nervous systemtransmission process
项目摘要
DESCRIPTION (provided by applicant): Recently it has been reported that actin filaments and microtubules are able to transmit electric signals and sustain ionic conductance. Since the velocity of electrical signals along these filaments is, depending on specific conditions, of same range as the propagation of neural impulses, the concurrent propagation of electrical signals along these filaments and electrochemical currents along the axonal membrane is possible in principle. This novel conduction mechanism observed in cells opens unexplored frontiers that will change the current understanding of neural activities and neuronal networks. Not surprisingly, the ionic conduction of these structures has been associated with processes as diverse as directional growth, cytotoxicity, plasticity, and migration. However, the underlying biophysical principles that support this behavior are poorly understood. Therefore, the objective of this proposed research is to generate substantial preliminary results to advance the molecular understanding of ionic conductance and electric signal transmission properties of microtubules and actin filaments. We believe that filaments and axon membranes may be able to transmit different kinds of information. Such capability may be affected by age and physiological conditions in different manner and therefore the corresponding propagation of electrical signal along filaments and neural axon membrane might be associated to different neural activity dysfunctions. Without question, investigating the biophysical principles underlying the electric and solvation properties of these cable-like filaments can bring an urgently needed progress in the molecular causes of many developmental and degenerative brain disorders. We may not validate our hypothesis and address this gap in knowledge using conventional models and approaches. Therefore one of the aims of this project consists in developing a computational tool to rationally investigate the electrophysiological mechanisms that affect conformational changes and conductance of electrical signals in both extra- and intracellular environments. We will perform a systematic characterization of these properties at a molecular level. This theoretical framework would also make great contributions to conventional areas of biochemistry where electrostatics underlies a major part of molecular properties. The proposed computational model will be then further extended to produce the mathematical engine to investigate signal transduction in proteins. The outcomes of this proposal will have a significant impact on the understanding and clinical applications of non-neuronal signal transduction and could open new therapeutic avenues to help the millions of patients currently affected by these disorders. In addition, the computational model (which will be publicly available) will enable the advancement of various technological and biomedical applications involving electrical conductance in proteins such as electrochemical biosensors, electric stimulation of tissue growth, and biomolecular processors.
描述(由申请人提供):最近有报道称肌动蛋白丝和微管能够传输电信号并维持离子电导,因为根据具体条件,电信号沿着这些丝的速度与传播的范围相同。原则上,沿着这些细丝的电信号和沿着轴突膜的电化学电流的同时传播是可能的,这种在细胞中观察到的新颖的传导机制开辟了未探索的前沿。然而,这将改变目前对神经活动和神经网络的理解,毫不奇怪,这些结构的离子传导与定向生长、细胞毒性、可塑性和迁移等多种过程有关,这是支持这种行为的基本生物物理原理。因此,这项研究的目的是产生实质性的初步结果,以促进对微管和肌动蛋白丝的离子电导和电信号传输特性的分子理解。传输不同类型的信息。这种能力可能会以不同的方式受到年龄和生理条件的影响,因此电信号沿着细丝和神经轴突膜的相应传播可能与不同的神经活动功能障碍相关,毫无疑问,研究潜在的生物物理原理。这些电缆状细丝的电和溶剂化特性可以为许多发育性和退行性脑部疾病的分子原因带来迫切需要的进展,因此我们可能无法使用传统模型和方法来验证我们的假设并解决这一知识空白。该项目的目标包括开发一种计算工具来合理研究影响细胞外和细胞内环境中电信号构象变化和电导的电生理机制,我们将在分子水平上对这些特性进行系统表征。对静电学是分子特性主要部分的传统生物化学领域的贡献随后将进一步扩展以产生研究蛋白质信号转导的数学引擎。该提案的结果将对理解产生重大影响。及其临床应用此外,该计算模型(将公开)将促进涉及电导的各种技术和生物医学应用的发展。蛋白质,例如电化学生物传感器、组织生长的电刺激和生物分子处理器。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A multi-scale approach to describe electrical impulses propagating along actin filaments in both intracellular and in vitro conditions.
一种描述细胞内和体外条件下沿肌动蛋白丝传播的电脉冲的多尺度方法。
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:3.9
- 作者:Hunley, Christian;Uribe, Diego;Marucho, Marcelo
- 通讯作者:Marucho, Marcelo
Polar-solvation classical density-functional theory for electrolyte aqueous solutions near a wall.
近壁电解质水溶液的极性溶剂化经典密度泛函理论。
- DOI:10.1103/physreve.93.042607
- 发表时间:2016-04
- 期刊:
- 影响因子:0
- 作者:Warshavsky V;Marucho M
- 通讯作者:Marucho M
Ion-ion correlation, solvent excluded volume and pH effects on physicochemical properties of spherical oxide nanoparticles.
离子-离子相关性、溶剂排除体积和 pH 对球形氧化物纳米颗粒物理化学性质的影响。
- DOI:10.1016/j.jcis.2015.10.019
- 发表时间:2016-01-15
- 期刊:
- 影响因子:9.9
- 作者:Ovanesyan Z;Aljzmi A;Almusaynid M;Khan A;Valderrama E;Nash KL;Marucho M
- 通讯作者:Marucho M
Electrical double layer properties of spherical oxide nanoparticles.
球形氧化物纳米粒子的双电层特性。
- DOI:10.1039/c6cp08174f
- 发表时间:2017-02-15
- 期刊:
- 影响因子:0
- 作者:Hunley C;Marucho M
- 通讯作者:Marucho M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marcelo Marucho其他文献
Marcelo Marucho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marcelo Marucho', 18)}}的其他基金
Polyelectrolyte Nature of Cytoskeleton Filaments
细胞骨架丝的聚电解质性质
- 批准号:
10179425 - 财政年份:2018
- 资助金额:
$ 14.7万 - 项目类别:
相似国自然基金
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
运动状态下代谢率的年龄变化特征及对人体热舒适的影响研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于堆叠式集成学习探索人居环境对生物学年龄的影响
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 14.7万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 14.7万 - 项目类别:
Stopping Hydroxychloroquine In Elderly Lupus Disease (SHIELD)
停止使用羟氯喹治疗老年狼疮病 (SHIELD)
- 批准号:
10594743 - 财政年份:2023
- 资助金额:
$ 14.7万 - 项目类别:
Identifying and testing a tailored strategy to achieve equity in blood pressure control in PACT
确定并测试量身定制的策略,以在 PACT 中实现血压控制的公平性
- 批准号:
10538513 - 财政年份:2023
- 资助金额:
$ 14.7万 - 项目类别: