Metabolic Reprogramming in Acute Kidney Injury
急性肾损伤中的代谢重编程
基本信息
- 批准号:9100699
- 负责人:
- 金额:$ 35.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-22 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAcute Renal Failure with Renal Papillary NecrosisAnimal ModelAntioxidantsBiochemicalBiogenesisBiologicalBiological AssayBiological ProcessBrain Hypoxia-IschemiaChronicChronic Kidney FailureClinicalCre-LoxPCritical CareCritiquesCytoprotectionEnergy MetabolismEpithelialEpithelial CellsEpitheliumErythropoiesisErythropoietinEventFunctional disorderGeneticGenetically Engineered MouseGlutamineGrantHealthHomologous GeneHydroxylationHypoxiaHypoxia Inducible FactorImageIn VitroIndividualInflammatoryInjuryIntensive CareIronKidneyLaboratoriesLeadMass Spectrum AnalysisMediatingMetabolicMetabolic PathwayMetabolismMitochondriaMolecularMolecular GeneticsNatural regenerationOutcomeOxygenOxygenasesPathway interactionsPhysiologyPlayPreventionProcollagen-Proline DioxygenaseProductionProlineProteinsRegulationRenal Interstitial CellReperfusion InjuryResolutionRespirationRoleSpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationSystemTetracyclinesTherapeuticTherapeutic InterventionTubular formationWorkalpha ketoglutarateangiogenesisbHLH-PAS factor HLFbasecell typeclinical careglucose metabolismhypoxia inducible factor 1improvedin vivoinhibitor/antagonistinjuredinsightmacromoleculemetabolic abnormality assessmentmortalitypre-clinicalprogramsrenal epitheliumrenal hypoxiarenal ischemiarenal ischemia/hypoxiarepairedresponsesensortargeted treatmenttherapy designtranscription factor
项目摘要
DESCRIPTION (provided by applicant): Acute kidney injury (AKI) resulting from ischemia-reperfusion injury (IRI) is a frequently encountered clinical problem and associates with high mortality in a critical care setting. It is furthermore an important contributor to the progressionof chronic kidney disease (CKD). A central pathway in the regulation of renal hypoxia/ischemia responses is the prolyl-hydroxylase (PHD)/hypoxia-inducible factor (HIF) oxygen-sensing pathway. PHD proteins are iron- and 2-oxoglutarate-dependent oxygenases that function as oxygen sensors and regulate HIF activity by catalyzing the hydroxylation of specific proline residues within the oxygen-dependent degradation domain of it's alpha-subunit. HIFs are pleiotropic heterodimeric transcription factors that play key roles in cellular adaptation and survival under hypoxic/ischemic conditions. All three main HIF-PHDs, PHD1, -2 and -3, are expressed in the kidney. While PHD2 regulates HIF-1 activity in renal epithelial cells and has been shown to control erythropoietin production in renal interstitial cells, the role of PHD1 and PHD3 in renal hypoxia responses and pathophysiology is unknown. Our laboratory and other groups have demonstrated in preclinical animal models that short-term pharmacologic inactivation of renal PHDs has great therapeutic potential for the prevention of acute ischemic injuries and their long-term sequelae. In order to understand the functional role of individual PHDs in renal physiology and to gain insight into the molecular and cellular basis of PHD/HIF-mediated renoprotection, we have begun to use genetic and pharmacologic approaches to dissect cell type-specific PHD functions and their role in the regulation of renal metabolism. Here we hypothesize that PHD/HIF-controlled re-programming of metabolism in renal epithelial cells plays a central role in determining the biological outcome of ischemic kidney injuries. Under this grant we use genetically engineered mice to investigate the metabolic consequences of acute PHD inactivation in the kidney. Three specific aims are proposed. Aims 1 investigates the role of PHD2 in renal energy metabolism, aim 2 examines the functional role of tubular epithelial PHD1 and PHD3 in renal physiology and IRI, and aim 3 examines specific metabolic pathways that associate with cytoprotection in IRI.
描述(由申请人提供):缺血再灌注损伤(IRI)引起的急性肾损伤(AKI)是一个经常遇到的临床问题,并且与重症监护环境中的高死亡率相关。此外,它还是慢性肾病(CKD)进展的重要因素。调节肾脏缺氧/缺血反应的中心途径是脯氨酰羟化酶(PHD)/缺氧诱导因子(HIF)氧敏感途径。 PHD 蛋白是铁和 2-酮戊二酸依赖性加氧酶,充当氧传感器,并通过催化其 α 亚基的氧依赖性降解域内特定脯氨酸残基的羟基化来调节 HIF 活性。 HIF 是多效性异二聚体转录因子,在缺氧/缺血条件下的细胞适应和生存中发挥关键作用。所有三种主要的 HIF-PHD,PHD1、-2 和 -3,均在肾脏中表达。虽然 PHD2 调节肾上皮细胞中的 HIF-1 活性,并已被证明可以控制肾间质细胞中促红细胞生成素的产生,但 PHD1 和 PHD3 在肾缺氧反应和病理生理学中的作用尚不清楚。我们的实验室和其他小组已经在临床前动物模型中证明,短期药物灭活肾脏 PHD 对于预防急性缺血性损伤及其长期后遗症具有巨大的治疗潜力。 为了了解个体 PHD 在肾脏生理学中的功能作用,并深入了解 PHD/HIF 介导的肾脏保护的分子和细胞基础,我们已经开始使用遗传和药理学方法来剖析细胞类型特异性 PHD 功能及其肾代谢的调节作用。在这里,我们假设 PHD/HIF 控制的肾上皮细胞代谢重编程在决定缺血性肾损伤的生物学结果中发挥着核心作用。在这笔资助下,我们使用基因工程小鼠来研究肾脏急性 PHD 失活的代谢后果。提出了三个具体目标。目标 1 研究 PHD2 在肾脏能量代谢中的作用,目标 2 检查肾小管上皮 PHD1 和 PHD3 在肾脏生理和 IRI 中的功能作用,目标 3 检查与 IRI 细胞保护相关的特定代谢途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Volker Hans Haase其他文献
Volker Hans Haase的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Volker Hans Haase', 18)}}的其他基金
Mitochondrial electron transport dysfunction: Dissecting pathomechanisms
线粒体电子传递功能障碍:剖析病理机制
- 批准号:
10679988 - 财政年份:2023
- 资助金额:
$ 35.55万 - 项目类别:
Cellular and Molecular Mechanisms of Renal Anemia
肾性贫血的细胞和分子机制
- 批准号:
10587989 - 财政年份:2013
- 资助金额:
$ 35.55万 - 项目类别:
Cellular and Molecular Mechanisms of Renal Anemia
肾性贫血的细胞和分子机制
- 批准号:
8633776 - 财政年份:2013
- 资助金额:
$ 35.55万 - 项目类别:
Cellular and Molecular Mechanisms of Renal Anemia
肾性贫血的细胞和分子机制
- 批准号:
10265319 - 财政年份:2013
- 资助金额:
$ 35.55万 - 项目类别:
Cellular and Molecular Mechanisms of Renal Anemia
肾性贫血的细胞和分子机制
- 批准号:
10427228 - 财政年份:2013
- 资助金额:
$ 35.55万 - 项目类别:
Cellular and Molecular Mechanisms of Renal Anemia
肾性贫血的细胞和分子机制
- 批准号:
9275414 - 财政年份:2013
- 资助金额:
$ 35.55万 - 项目类别:
Cellular and Molecular Mechanisms of Renal Anemia
肾性贫血的细胞和分子机制
- 批准号:
8966671 - 财政年份:2013
- 资助金额:
$ 35.55万 - 项目类别:
相似海外基金
The protective role of kidney-derived Tamm Horsfall protein (Uromodulin) in sepsis
肾源性 Tamm Horsfall 蛋白(尿调节蛋白)在脓毒症中的保护作用
- 批准号:
10886979 - 财政年份:2023
- 资助金额:
$ 35.55万 - 项目类别:
Resident Memory T cells in Chronic Kidney Disease
慢性肾脏病中的常驻记忆 T 细胞
- 批准号:
10676628 - 财政年份:2023
- 资助金额:
$ 35.55万 - 项目类别:
The role of amphiregulin in mediating radiation cystitis in cancer survivors
双调蛋白在介导癌症幸存者放射性膀胱炎中的作用
- 批准号:
10636699 - 财政年份:2023
- 资助金额:
$ 35.55万 - 项目类别:
Elucidating the temporal mechanism of vancomycin kidney toxicity as a means to prevent injury
阐明万古霉素肾毒性的时间机制作为预防损伤的手段
- 批准号:
10727172 - 财政年份:2023
- 资助金额:
$ 35.55万 - 项目类别:
Covid-19 induced worsening of glomerular diseases
Covid-19 导致肾小球疾病恶化
- 批准号:
10655140 - 财政年份:2023
- 资助金额:
$ 35.55万 - 项目类别: