Low Back Pain Quantifying Risk Factors
腰痛量化风险因素
基本信息
- 批准号:6761508
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-30 至 2006-09-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION: This multi-center prospective cohort study will: (i) Determine baseline prevalence rates and subsequent incidence rates over a 2 year period for low back pain (LBP), LBP with neurological signs (sciatica), LBP-related impairments, lost time and modified duty-related LBP for 3 levels of job physical exposures (low, medium, high), (ii) Quantify job and individual risk factors (e.g., weights, frequency, horizontal and vertical locations, low back moments, etc.), (iii) Validate existing job analysis methods (especially Revised NIOSH Lifting Equation, Maximum Acceptable Weights land Forces, 3-D Static Strength Biomechanical Model, the Proposed TLV for Lifting, and the Washington State Checklist, and (iv) Develop a final model for determining MSD risks. A cohort of 678 workers (study drop-outs replaced) from 10 very different industries with a total worker population of over 10,000 in three diverse states will ;) participate in the study to help ensure generalizability of the study results. To maximize objectivity and accuracy, job physical exposures will rely primarily on measurements to quantify
exposures. To maximize clinical and epidemiological validity and reliability, all participants will have health outcomes assessments by Physical Therapists and qualified physicians. These will include: baseline questionnaires, structured interviews and standardized physical examinations. Changes in job physical exposures will be monitored monthly. LBP symptoms, sciatica, LBP impairments and LBP severity measures will be assessed monthly using a symptom questionnaire on all, and structured interviews/physical examinations on those with symptoms. Job physical exposure and health outcomes assessment teams will be blinded to each other throughout the field observation phase. Multivariate logistic regression models and survival analyses will be utilized to explore relationships between job physical risk factors and low back pain (LBP), sciatica, LBP impairments and LBP severity measures. In addition to quantifying ergonomic risk factors, interactions between various jobs, psychosocial and individual risk factors will be explored. This project is expected to result in the ability to improve the existing ergonomic job evaluation models that have robust predictive capabilities for a broad range of industries.
DESCRIPTION: This multi-center prospective cohort study will: (i) Determine baseline prevalence rates and subsequent incidence rates over a 2 year period for low back pain (LBP), LBP with neurological signs (sciatica), LBP-related impairments, lost time and modified duty-related LBP for 3 levels of job physical exposures (low, medium, high), (ii) Quantify job and individual risk factors (e.g., (iii)验证现有的工作分析方法(尤其是修订后的NIOSH提升方程,最大可接受的重量陆军,3-D静电强度生物力学模型,提议的TLV和Washington State Proping frops for Navers n s n s Secohs n n Seco Hevers Nevers Nevers for Nive niosh,频率,频率,水平和垂直位置,下腰力矩等),(iii)验证现有的工作分析方法(尤其是修订后的NIOSH提升方程,最大可接受的重量,土地力量,3-D型静态生物力学模型,提议的TLV提示的TLV和Washington State State Privist及其最终模型的启动模型,以确定毫无疑问的MSD。来自10个非常不同的行业,在三个不同的州中,工人总人口超过10,000个,将参与研究,以帮助确保研究结果的普遍性。 为了最大化客观性和准确性,工作身体暴露将主要依赖于测量来量化
暴露。为了最大程度地提高临床和流行病学的有效性和可靠性,所有参与者将对物理治疗师和合格的医生进行健康结果评估。这些将包括:基线问卷,结构化访谈和标准化的身体检查。工作身体暴露的变化将每月监控。 LBP症状,坐骨神经痛,LBP障碍和LBP严重程度措施将每月使用症状调查表评估所有人,并对患有症状的人进行结构化访谈/身体检查。在整个现场观察阶段,工作的身体暴露和健康成果评估团队将彼此视而不见。 多元逻辑回归模型和生存分析将用于探索工作物理风险因素与下背痛(LBP),坐骨神经痛,LBP障碍和LBP严重程度指标之间的关系。除了量化符合人体工程学的风险因素外,还将探讨各种工作,社会心理和个人风险因素之间的相互作用。预计该项目有望提高现有的符合人体工程学的工作评估模型,这些模型具有强大的预测能力,可为广泛的行业提供强大的预测能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ARUN GARG其他文献
ARUN GARG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ARUN GARG', 18)}}的其他基金
Exposure Response Relationships for CTS and Epicondylitis from Pooled Data
汇总数据中 CTS 和上髁炎的暴露反应关系
- 批准号:
8733196 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Upper Limb Musculoskeletal Disorders: Quantifying Risk
上肢肌肉骨骼疾病:量化风险
- 批准号:
7089700 - 财政年份:2002
- 资助金额:
$ 50万 - 项目类别:
Upper Limb Musculosketal Disorders: Quantifying Risk
上肢肌肉骨骼疾病:量化风险
- 批准号:
6611924 - 财政年份:2002
- 资助金额:
$ 50万 - 项目类别:
Upper Limb Musculosketal Disorders: Quantifying Risk
上肢肌肉骨骼疾病:量化风险
- 批准号:
6665091 - 财政年份:2002
- 资助金额:
$ 50万 - 项目类别:
Upper Limb Musculosketal Disorders: Quantifying Risk
上肢肌肉骨骼疾病:量化风险
- 批准号:
6895144 - 财政年份:2002
- 资助金额:
$ 50万 - 项目类别:
Upper Limb Musculoskeletal Disorders: Quantifying Risk
上肢肌肉骨骼疾病:量化风险
- 批准号:
7280459 - 财政年份:2002
- 资助金额:
$ 50万 - 项目类别:
Upper Limb Musculosketal Disorders: Quantifying Risk
上肢肌肉骨骼疾病:量化风险
- 批准号:
6775566 - 财政年份:2002
- 资助金额:
$ 50万 - 项目类别:
Upper Limb Musculoskeletal Disorders: Quantifying Risk
上肢肌肉骨骼疾病:量化风险
- 批准号:
7439204 - 财政年份:2002
- 资助金额:
$ 50万 - 项目类别:
相似海外基金
Neuro-Fuzzy Prediction of Spine Loads in Response to Ri*
响应 Ri* 的脊柱负荷的神经模糊预测
- 批准号:
6555060 - 财政年份:2002
- 资助金额:
$ 50万 - 项目类别: