Statistical Analysis Methods and Software for ChIP-seq Data
ChIP-seq 数据的统计分析方法和软件
基本信息
- 批准号:8785690
- 负责人:
- 金额:$ 29.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-04-26 至 2016-09-01
- 项目状态:已结题
- 来源:
- 关键词:AddressBindingBioconductorBiologicalCellsChIP-on-chipChIP-seqCharacteristicsCommunitiesComputer AnalysisComputer SimulationComputer softwareDataData SetDatabasesDetectionDevelopmentDiagnosisDiseaseEpigenetic ProcessEvaluationExperimental DesignsGalaxyGene ExpressionGenerationsGeneticGenomeGenomicsHealthHistonesIndividualInvestigationLeadLettersLocationMapsMethodologyMethodsPatternPlayPopulationPositioning AttributePublic HealthReadingRepetitive SequenceResearchResearch PersonnelResourcesRoleSamplingStatistical MethodsStatistical ModelsTechnologyTimeTissuesTrainingUnited States National Institutes of HealthValidationVariantbasechromatin immunoprecipitationcomparativecostdesignepigenomeepigenomicsgenome-widegenome-wide analysishuman diseasenext generation sequencingnovelprogramsresearch studysimulationtooltranscription factortranscriptome sequencing
项目摘要
DESCRIPTION (provided by applicant): The advent of high throughput next generation sequencing (NGS) technologies have revolutionized the fields of genetics and genomics by allowing rapid and inexpensive sequencing of billions of bases. Among the NGS applications, ChIP-seq (chromatin immunoprecipitation followed by NGS) is perhaps the most successful to date. ChIP-seq technology enables investigators to study genome-wide binding of transcription factors and mapping of epigenomic marks. Both of these play crucial roles in programming of gene expression in a cell specific manner; therefore their genome-wide mapping can significantly advance our ability to understand and diagnose human diseases. Although basic analysis tools for ChIP-seq data are rapidly increasing, all of the available methods share one or more of the following shortcomings. First, they focus on analyzing one ChIP- seq sample at a time. As ChIP-seq is becoming commonly utilized in epigenome mapping to understand phenotypic variation, the demand for methods that can handle multiple samples efficiently is rapidly rising. Second, they only utilize sequence reads that align to unique locations on the reference genome. This hinders the study of highly repetitive regions of genomes by ChIP-seq. Third, commonly used designs for ChIP-seq experiments employ one matching control sample per each ChIP-seq sample. This limits the genome coverage of control experiments and impacts the detection of enrichment in ChIP samples. It also significantly contributes to increase in sequencing costs for large-scale ChIP-seq studies. The objective of this project is to address these challenges of ChIP-seq analysis in three specific aims: (1) Statistical methods for inference from multiple samples; (2) Probabilistic models for utilizing reads that map to multiple locations (multi-reads) in the genome; (3) Development and evaluation of in silico pooling designs for control experiments. The projects will be accomplished through a combination of methodological development, simulation, computational analysis, and experimental validation. Methods will be developed and evaluated using datasets from the ENCODE, modENCODE, and the RoadMap Epigenomics consortiums as well as novel datasets from collaborators. Statistical resources generated from the project, which will be disseminated in publicly available software, will provide essential tools for the efficient design and analysis of ChIP-seq experiments.
描述(由申请人提供):高通量下一代测序(NGS)技术的出现通过允许快速且廉价地对数十亿个碱基进行测序,彻底改变了遗传学和基因组学领域。在 NGS 应用中,ChIP-seq(染色质免疫沉淀,然后进行 NGS)可能是迄今为止最成功的。 ChIP-seq 技术使研究人员能够研究转录因子的全基因组结合和表观基因组标记的图谱。这两者在以细胞特异性方式进行基因表达编程中都发挥着至关重要的作用。因此,它们的全基因组图谱可以显着提高我们理解和诊断人类疾病的能力。尽管 ChIP-seq 数据的基本分析工具正在迅速增加,但所有可用的方法都存在以下一个或多个缺点。首先,他们专注于一次分析一个 ChIP-seq 样本。随着 ChIP-seq 在表观基因组作图中广泛用于了解表型变异,对能够有效处理多个样本的方法的需求正在迅速增长。其次,他们仅利用与参考基因组上的独特位置对齐的序列读取。这阻碍了通过 ChIP-seq 对基因组高度重复区域的研究。第三,ChIP-seq 实验的常用设计为每个 ChIP-seq 样本采用一个匹配的对照样本。这限制了对照实验的基因组覆盖范围,并影响 ChIP 样品中富集的检测。它还显着增加了大规模 ChIP-seq 研究的测序成本。该项目的目标是通过三个具体目标解决 ChIP-seq 分析的这些挑战:(1)从多个样本推断的统计方法; (2) 利用映射到基因组中多个位置的读取(多重读取)的概率模型; (3) 用于控制实验的计算机模拟池设计的开发和评估。这些项目将通过方法开发、模拟、计算分析和实验验证的结合来完成。将使用来自 ENCODE、modENCODE 和 RoadMap Epigenomics 联盟的数据集以及来自合作者的新颖数据集来开发和评估方法。该项目产生的统计资源将在公开软件中传播,将为 ChIP-seq 实验的高效设计和分析提供必要的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sunduz Keles其他文献
Sunduz Keles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sunduz Keles', 18)}}的其他基金
Statistical methods for co-expression network analysis of population-scale scRNA-seq data
群体规模 scRNA-seq 数据共表达网络分析的统计方法
- 批准号:
10740240 - 财政年份:2023
- 资助金额:
$ 29.8万 - 项目类别:
Functionally relevant mapping of human GWAS SNPs on model organisms
人类 GWAS SNP 在模式生物上的功能相关图谱
- 批准号:
10056966 - 财政年份:2020
- 资助金额:
$ 29.8万 - 项目类别:
Statistical Power Calculations for ChIP-seq experiments
ChIP-seq 实验的统计功效计算
- 批准号:
8284083 - 财政年份:2012
- 资助金额:
$ 29.8万 - 项目类别:
Statistical Analysis Methods and Software for ChIP-seq Data
ChIP-seq 数据的统计分析方法和软件
- 批准号:
8605900 - 财政年份:2007
- 资助金额:
$ 29.8万 - 项目类别:
Statistical Methods for the Analysis of ChlP-chip Data
ChlP 芯片数据分析的统计方法
- 批准号:
7253510 - 财政年份:2007
- 资助金额:
$ 29.8万 - 项目类别:
High dimensional statistical data integration for studying regulatory variation
用于研究监管变化的高维统计数据集成
- 批准号:
9344668 - 财政年份:2007
- 资助金额:
$ 29.8万 - 项目类别:
High dimensional statistical data modeling and integration for studying regulatory variation
用于研究监管变化的高维统计数据建模和集成
- 批准号:
10413927 - 财政年份:2007
- 资助金额:
$ 29.8万 - 项目类别:
Statistical Analysis Methods and Software for ChIP-seq Data
ChIP-seq 数据的统计分析方法和软件
- 批准号:
8370723 - 财政年份:2007
- 资助金额:
$ 29.8万 - 项目类别:
Statistical Methods for the Analysis of ChlP-chip Data
ChlP 芯片数据分析的统计方法
- 批准号:
7413330 - 财政年份:2007
- 资助金额:
$ 29.8万 - 项目类别:
Statistical Methods for the Analysis of ChlP-chip Data
ChlP 芯片数据分析的统计方法
- 批准号:
7616521 - 财政年份:2007
- 资助金额:
$ 29.8万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
利用分子装订二硫键新策略优化改造α-芋螺毒素的研究
- 批准号:82104024
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CST蛋白复合体在端粒复制中对端粒酶移除与C链填补调控的分子机制研究
- 批准号:31900521
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Wdr47蛋白在神经元极化中的功能及作用机理的研究
- 批准号:31900503
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Next Generation Computational Tools for Functional Genomics
下一代功能基因组学计算工具
- 批准号:
9979396 - 财政年份:2020
- 资助金额:
$ 29.8万 - 项目类别:
Next Generation Computational Tools for Functional Genomics
下一代功能基因组学计算工具
- 批准号:
10666501 - 财政年份:2020
- 资助金额:
$ 29.8万 - 项目类别:
Statistical Methods for MicroRNA-Seq Experiments
MicroRNA-Seq 实验的统计方法
- 批准号:
10092662 - 财政年份:2020
- 资助金额:
$ 29.8万 - 项目类别:
Next Generation Computational Tools for Functional Genomics
下一代功能基因组学计算工具
- 批准号:
10448436 - 财政年份:2020
- 资助金额:
$ 29.8万 - 项目类别:
Statistical Methods for MicroRNA-Seq Experiments
MicroRNA-Seq 实验的统计方法
- 批准号:
10261580 - 财政年份:2020
- 资助金额:
$ 29.8万 - 项目类别: