CopN mechanism as a key to understanding Type Three Secretion in bacteria
CopN 机制是理解细菌三型分泌的关键
基本信息
- 批准号:9093685
- 负责人:
- 金额:$ 39.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:Antibiotic ResistanceAntibioticsBacteriaBacterial InfectionsBindingBinding ProteinsBinding SitesBiochemistryCategoriesCell membraneCell physiologyCellsCenters for Disease Control and Prevention (U.S.)ChlamydiaChlamydophila psittaciComplexCytoplasmCytoskeletonCytosolDataDevelopmentDrug TargetingDrug resistanceEffector CellEscherichia coliEukaryotic CellGram-Negative BacteriaHealthHost DefenseLeadLinkMediatingMembraneMicrotubulesModificationMolecularMolecular ChaperonesMutagenesisMutationNeedlesPeptidesPharmaceutical PreparationsProcessProtein SecretionProteinsPseudomonasPublic HealthPublishingRegulationRoleSalmonellaShigellaStimulusStructureSystemTestingTherapeuticTubulinVariantVirulenceVirulence FactorsX-Ray CrystallographyYersinia enterocoliticaYersinia pestisdesigngenetic regulatory proteininhibitor/antagonistkinetosomemethicillin resistant Staphylococcus aureusmortalitynew therapeutic targetnovelpathogenperiplasmpolymerizationpreventresearch studyresponsescaffold
项目摘要
DESCRIPTION (provided by applicant): Antibiotic resistant and pathogenic Gram-negative bacteria are an increasingly important public health concern and are expected to soon surpass methicillin-resistant S. aureus as the principal cause of mortality due to bacterial infection. Despite evident need, new antibiotics are not being developed at an adequate rate and most effort involves modifications of existing drugs, rather than identification and development of novel drug targets. An attractive target for the much-needed development of new antibiotic therapeutics is the Type Three Secretion System (T3SS), a virulence factor delivery machine that is conserved among over 25 species of Gram-negative bacteria (including category A, B, and C pathogens). The T3SS is a multi-protein needle-like machine that spans the bacterial and host membranes and delivers protein translocator molecules into the membrane of the target cell and effector molecules into the cytosol of the target cell. The effectors promote virulence by
co-opting cellular processes and subverting host defenses. While the molecular mechanisms of TTSS regulation are largely unknown, key requirements are that the pore is constitutively closed, that it opens in response to a stimulus, and secretion is an orderly, hierarchical process.
Effectors are secreted directly into the host cell, through a preformed translocon pore. This pore is composed of secreted translocator proteins that must be secreted prior to effectors. A key regulatory protein is the "plug" which blocks the pore. Following plug protein secretion translocators are secreted, followed by effectors. In strains where plug proteins have been deleted, effectors are secreted constitutively, translocator secretion is severely defective, and the strains are non-virulent. The origin of the essential translocator-effector hierarchy is unknown. We have recently determined the first structure of a plug protein bound to a chaperone for a translocator. This structure reveals that plugs are molecular scaffolds that are tethered to translocators. We intend to further elucidate the role of plug-translocator scaffolding
in multiple gram-negative species, and to understand the novel effector function of the Chlamydial plug protein. We have shown these proteins to possess novel tubulin binding function are poised, with our recent structure, to determine the molecular strategies that Chlamydia use to regulate the host's microtubule cytoskeleton. Finally, we will evaluate the chaperone-translocator interaction as a novel therapeutic target for the development of broad-spectrum antibiotics.
描述(由申请人提供):抗生素耐药性致病性革兰氏阴性菌是一个日益重要的公共卫生问题,预计很快将超过耐甲氧西林金黄色葡萄球菌,成为细菌感染导致死亡的主要原因。尽管存在明显的需求,但新抗生素的开发速度还不够,而且大多数努力涉及对现有药物的修改,而不是识别和开发新的药物靶点。对于急需开发的新抗生素疗法来说,一个有吸引力的目标是三型分泌系统(T3SS),这是一种毒力因子传递机器,在超过 25 种革兰氏阴性细菌(包括 A、B 和 C 类病原体)中保守。 )。 T3SS 是一种多蛋白针状机器,可跨越细菌和宿主细胞膜,将蛋白质易位分子递送到靶细胞膜中,将效应分子递送到靶细胞胞质溶胶中。效应子通过以下方式促进毒力
共同选择细胞过程并颠覆宿主防御。 虽然 TTSS 调节的分子机制在很大程度上尚不清楚,但关键要求是孔本质上是封闭的,它响应刺激而打开,并且分泌是一个有序的、分层的过程。
效应子通过预先形成的易位子孔直接分泌到宿主细胞中。该孔由分泌的易位蛋白组成,必须在效应器之前分泌。一个关键的调节蛋白是堵塞毛孔的“塞子”。插头蛋白分泌后,易位子被分泌,随后是效应子。在插头蛋白被删除的菌株中,效应子是组成型分泌的,易位子分泌有严重缺陷,并且菌株是无毒力的。基本易位器-效应器层次结构的起源尚不清楚。我们最近确定了与易位子伴侣结合的插头蛋白的第一个结构。这种结构揭示了插头是与易位子相连的分子支架。我们打算进一步阐明插头转运支架的作用
在多种革兰氏阴性物种中,并了解衣原体插头蛋白的新效应子功能。我们已经证明,这些蛋白质具有新颖的微管蛋白结合功能,并且根据我们最新的结构,可以确定衣原体用于调节宿主微管细胞骨架的分子策略。最后,我们将评估分子伴侣-易位子相互作用作为广谱抗生素开发的新治疗靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BENJAMIN W SPILLER其他文献
BENJAMIN W SPILLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BENJAMIN W SPILLER', 18)}}的其他基金
CORE 2: Protein Expression and Purification Core
核心 2:蛋白质表达和纯化核心
- 批准号:
10625689 - 财政年份:2023
- 资助金额:
$ 39.21万 - 项目类别:
CopN mechanism as a key to understanding Type Three Secretion in bacteria
CopN 机制是理解细菌三型分泌的关键
- 批准号:
9305827 - 财政年份:2014
- 资助金额:
$ 39.21万 - 项目类别:
CopN mechanism as a key to understanding Type Three Secretion in bacteria
CopN 机制是理解细菌三型分泌的关键
- 批准号:
8759663 - 财政年份:2014
- 资助金额:
$ 39.21万 - 项目类别:
Epitope shifting and Antibody Maturation during Rotavirus Infection
轮状病毒感染期间的表位转移和抗体成熟
- 批准号:
8318028 - 财政年份:2011
- 资助金额:
$ 39.21万 - 项目类别:
Epitope shifting and Antibody Maturation during Rotavirus Infection
轮状病毒感染期间的表位转移和抗体成熟
- 批准号:
8112800 - 财政年份:2011
- 资助金额:
$ 39.21万 - 项目类别:
Structural Studies of Voltage Gating in Voltage-Gated Sodium Channels
电压门控钠通道中电压门控的结构研究
- 批准号:
7305564 - 财政年份:2007
- 资助金额:
$ 39.21万 - 项目类别:
Structural Studies of Voltage Gating in Voltage-Gated Sodium Channels
电压门控钠通道中电压门控的结构研究
- 批准号:
7493751 - 财政年份:2007
- 资助金额:
$ 39.21万 - 项目类别:
Structural Studies of Voltage Gating in Voltage-Gated Sodium Channels
电压门控钠通道中电压门控的结构研究
- 批准号:
7921151 - 财政年份:2007
- 资助金额:
$ 39.21万 - 项目类别:
Structural Studies of Voltage Gating in Voltage-Gated Sodium Channels
电压门控钠通道中电压门控的结构研究
- 批准号:
7683100 - 财政年份:2007
- 资助金额:
$ 39.21万 - 项目类别:
相似国自然基金
靶向铜绿假单胞菌FpvA蛋白的铁载体偶联抗生素克服细菌耐药性及作用机制研究
- 批准号:82304313
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于吲哚信号分子的低剂量抗生素混合暴露诱导细菌群体耐药性机制及调控
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于质谱的细菌耐药性快速检测和抗生素最小抑菌浓度快速测量
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:
基于低浓度抗生素Hormesis效应的细菌耐药性前体机制及相关阻遏新方法的研究
- 批准号:21976137
- 批准年份:2019
- 资助金额:66 万元
- 项目类别:面上项目
胍基修饰的抗菌高分子与抗生素的协同效应及其对细菌耐药性的影响
- 批准号:81803481
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mining the phage playbook to create a potent, generic phage therapy
挖掘噬菌体剧本以创建有效的通用噬菌体疗法
- 批准号:
10723647 - 财政年份:2023
- 资助金额:
$ 39.21万 - 项目类别:
Novel antimicrobials to combat Gram-negative bacteria
对抗革兰氏阴性菌的新型抗菌剂
- 批准号:
10888456 - 财政年份:2023
- 资助金额:
$ 39.21万 - 项目类别:
Development of Targeted Antipseudomonal Bactericidal Prodrugs
靶向抗假单胞菌杀菌前药的开发
- 批准号:
10678074 - 财政年份:2023
- 资助金额:
$ 39.21万 - 项目类别:
Investigating phage therapy for the treatment of urinary tract infections
研究噬菌体疗法治疗尿路感染
- 批准号:
10677257 - 财政年份:2023
- 资助金额:
$ 39.21万 - 项目类别:
Developing a novel class of peptide antibiotics targeting carbapenem-resistant Gram-negative organisms
开发一类针对碳青霉烯类耐药革兰氏阴性生物的新型肽抗生素
- 批准号:
10674131 - 财政年份:2023
- 资助金额:
$ 39.21万 - 项目类别: