Next-gen Opto-GPCRs: spatiotemporal simulation of neuromodulator signaling
下一代 Opto-GPCR:神经调节信号传导的时空模拟
基本信息
- 批准号:9213972
- 负责人:
- 金额:$ 110.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-09 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsActivities of Daily LivingAddressAdoptedAdoptionAnimal ModelAnimalsAppetitive BehaviorArchitectureArrestinsBehaviorBehavioralBiochemicalBiochemistryBiologyBoxingBrainBrain DiseasesCannulasCell NucleusCellsClinicalColorCommunicationCommunitiesComplexCorticotropin-Releasing HormoneDissectionDopamineEngineeringFiber OpticsG Protein-Coupled Receptor SignalingG-Protein-Coupled ReceptorsGTP-Binding ProteinsGenerationsGeneticGoalsHealthHumanImageIn VitroIon ChannelIon PumpsIonsKnowledgeLigandsLightMapsMediatingMental disordersMetalsMethodsModelingMolecularMonitorMorphologic artifactsMusNeurobiologyNeurodegenerative DisordersNeuromodulatorNeuronsNeuropeptidesNeurosciencesNorepinephrineOpioidOpsinOrganismPharmacologyPhysiological ProcessesPhysiologyProcessPumpReceptor SignalingResolutionSeriesSerotoninSignal PathwaySignal TransductionSliceStructureSystemTechniquesTechnologyTestingTimeTranslatingTubeVariantViralWireless TechnologyWorkabstractingawakebasebiological systemsbrain tissuecell typedesigndesigner receptors exclusively activated by designer drugshypocretinin vivoinnovationmonoaminemultidisciplinarymutantneural circuitneurophysiologyneuroregulationneurotechnologynew technologynext generationnoveloptogeneticspeptide Greceptorrelating to nervous systemresearch studysimulationspatiotemporaltool
项目摘要
Project Summary/Abstract: The emerging field of optogenetics — using light to engage biological systems
— holds tremendous promise for dissection of neural circuits, cellular signaling and manipulating
neurophysiological systems in awake, behaving animals. However, the technological limits for implementing
optogenetics in dissecting neuromodulators in awake, freely-moving behavior is clear while working with
paradigms that require discrete spatiotemporal control of receptor signaling and when investigating neural
circuits that have very small diverse, “hard to reach” architecture, such as heterogeneous brain nuclei. To
engage neuropharmacological receptor substrates, neuroscientists in nearly every field use cannulas (simple
metal tubes) and have more recently adopted tethered fiber optics for in vivo optogenetics to control local
release of neuromodulator monoamine or neuropeptides. Unfortunately, these current methods are rather
limited and difficult to implement because they severely limit the spatiotemporal control over receptor signaling
pathways in discrete cell types. Moreover, current technology lacks a full tool box for multiplexed, subcellular,
spatiotemporal control of G protein coupled receptor signaling, the predominant means for neuromodulator
communication in the brain. For these reasons, an innovative effort combining neuroscience with biochemistry
and pharmacology was necessary in order to bring spatial-temporal in vitro and in vivo control over GPCR-
neuromodulator signaling. Therefore, here we directly address the central goals of this RFA-NS-16-775 in the
following manner. The central goal of this proposal is to develop a cutting-edge v2.0 Opto-XR receptors that
spatially and temporally control neuromodulator signaling in vitro and in freely moving animals. We have
proposed an uniquely integrated approach to achieve this goal that brings pharmacologists, physiologists,
biochemists, and neuroscientists together in a unique parallel manner. In the two specific aims we will develop
and test these novel tools in vitro and in vivo: 1) To develop mutant Gi and Gs, Opto-XR v2.0 receptors with
greater signaling dynamics and altered color spectra and sensitivity using structure-function analyses and
thorough in vitro characterization; and 2) To develop utility and characterize Gi and Gs versions of Opto-XR
v2.0 constructs in vivo and in models of freely-moving behavior using both traditional and wireless optogenetic
approaches. Successful completion of the proposal will provide the wider community of neuroscience with a
long awaited spatiotemporal manipulation of GPCRs – neuromodulator signaling within neural circuits in awake
freely behaving animals. This new technology will also further widen the field for approaches that are capable
of discrete control and optodynamic simulation of neuromodulator function in brain tissue.
项目摘要/摘要:光遗传学的新兴领域——利用光参与生物系统
- 为神经回路的解剖、细胞信号传导和操纵带来了巨大的希望
清醒、行为动物的神经生理系统然而,实施的技术限制。
光遗传学在清醒、自由移动行为中解剖神经调节剂的作用是清楚的,同时与
需要对受体信号进行离散时空控制以及研究神经系统时的范例
具有非常小、多样化、“难以到达”架构的电路,例如异构脑核。
涉及神经药理学受体底物,几乎每个领域的神经科学家都使用插管(简单
金属管),最近采用系留光纤进行体内光遗传学来控制局部
不幸的是,这些当前的方法相当缺乏神经调节剂单胺或神经肽的释放。
有限且难以实施,因为它们严重限制了对受体信号传导的时空控制
此外,当前的技术缺乏用于多重、亚细胞、
G 蛋白偶联受体信号传导的时空控制,神经调节剂的主要手段
由于这些原因,神经科学与生物化学相结合的创新努力。
为了在体外和体内对 GPCR 进行时空控制,药理学是必要的
因此,在这里我们直接解决 RFA-NS-16-775 中的中心目标。
该提案的中心目标是开发一种尖端的 v2.0 Opto-XR 受体。
我们已经在体外和自由活动的动物中空间和时间控制神经调节信号。
提出了一种独特的综合方法来实现这一目标,该方法使药理学家、生理学家、
生物化学家和神经科学家以独特的并行方式共同致力于这两个具体目标。
并在体外和体内测试这些新工具:1) 开发突变型 Gi 和 Gs、Opto-XR v2.0 受体
使用结构功能分析增强信号动态并改变色谱和灵敏度
彻底的体外表征;以及 2) 开发实用性并表征 Opto-XR 的 Gi 和 Gs 版本
v2.0 使用传统和无线光遗传学构建体内和自由移动行为模型
该提案的成功完成将为更广泛的神经科学界提供一个机会。
期待已久的 GPCR 时空操纵——清醒状态下神经回路内的神经调节信号传导
这项新技术也将进一步拓宽有能力的方法的领域。
脑组织神经调节功能的离散控制和光动力学模拟。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael R. Bruchas其他文献
Michael R. Bruchas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael R. Bruchas', 18)}}的其他基金
Optopharmacology and Sensors for Dissecting Opioid Action In Vivo
用于剖析阿片类药物体内作用的光药理学和传感器
- 批准号:
10040355 - 财政年份:2020
- 资助金额:
$ 110.38万 - 项目类别:
Optopharmacology and Sensors for Dissecting Opioid Action In Vivo
用于剖析阿片类药物体内作用的光药理学和传感器
- 批准号:
10471283 - 财政年份:2020
- 资助金额:
$ 110.38万 - 项目类别:
Project 4_Bruchas : Circuit-level Approaches for Dissecting Approach/Avoidance Behaviors Mediated by Nociceptin Systems in Mice
项目 4_Bruchas:用于解剖小鼠伤害感受素系统介导的接近/回避行为的电路级方法
- 批准号:
10601138 - 财政年份:2020
- 资助金额:
$ 110.38万 - 项目类别:
Project 4_Bruchas : Circuit-level Approaches for Dissecting Approach/Avoidance Behaviors Mediated by Nociceptin Systems in Mice
项目 4_Bruchas:用于解剖小鼠伤害感受素系统介导的接近/回避行为的电路级方法
- 批准号:
10383688 - 财政年份:2020
- 资助金额:
$ 110.38万 - 项目类别:
Optopharmacology and Sensors for Dissecting Opioid Action In Vivo
用于剖析阿片类药物体内作用的光药理学和传感器
- 批准号:
10268988 - 财政年份:2020
- 资助金额:
$ 110.38万 - 项目类别:
Optopharmacology and Sensors for Dissecting Opioid Action In Vivo
用于剖析阿片类药物体内作用的光药理学和传感器
- 批准号:
10867978 - 财政年份:2020
- 资助金额:
$ 110.38万 - 项目类别:
Next-gen Opto-GPCRs: spatiotemporal simulation of neuormodulator signaling
下一代 Opto-GPCR:神经调节信号传导的时空模拟
- 批准号:
9815886 - 财政年份:2018
- 资助金额:
$ 110.38万 - 项目类别:
Decoding Locus Coeruleus Neural Circuits and Signaling in Negative Affect
解码蓝斑神经回路和负面情绪中的信号传导
- 批准号:
9357671 - 财政年份:2016
- 资助金额:
$ 110.38万 - 项目类别:
Decoding Locus Coeruleus Neural Circuits and Signaling In Negative Affect
解码蓝斑神经回路和消极情绪中的信号传导
- 批准号:
10518981 - 财政年份:2016
- 资助金额:
$ 110.38万 - 项目类别:
Decoding Locus Coeruleus Neural Circuits and Signaling In Negative Affect
解码蓝斑神经回路和负面情绪中的信号传导
- 批准号:
10676944 - 财政年份:2016
- 资助金额:
$ 110.38万 - 项目类别:
相似国自然基金
老年期痴呆患者基础性日常生活活动能力损害的认知神经心理学基础及测量优化
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
基于VR技术的养老机构老年人ADL康复训练和评估量化体系构建及应用研究
- 批准号:81902295
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of voltage regulation of membrane transport
膜运输的电压调节机制
- 批准号:
10417430 - 财政年份:2022
- 资助金额:
$ 110.38万 - 项目类别:
Mechanisms of voltage regulation of membrane transport
膜运输的电压调节机制
- 批准号:
10595025 - 财政年份:2022
- 资助金额:
$ 110.38万 - 项目类别:
Priming with High-Frequency Trans-spinal Stimulation to Augment Locomotor Training Benefits in Spinal Cord Injury
通过高频经脊柱刺激增强脊髓损伤的运动训练效果
- 批准号:
10187619 - 财政年份:2020
- 资助金额:
$ 110.38万 - 项目类别:
Priming with High-Frequency Trans-spinal Stimulation to Augment Locomotor Training Benefits in Spinal Cord Injury
通过高频经脊柱刺激增强脊髓损伤的运动训练效果
- 批准号:
10394311 - 财政年份:2020
- 资助金额:
$ 110.38万 - 项目类别:
Contribution of Intrinsic Alpha-Motoneuron Excitability to Disuse-Induced Muscle Weakness
内在α运动神经元兴奋性对废用性肌无力的影响
- 批准号:
10294948 - 财政年份:2020
- 资助金额:
$ 110.38万 - 项目类别: