Development and Validation of Computational Algorithms to Assess Kidney Health in Electronic Health Records
电子健康记录中评估肾脏健康的计算算法的开发和验证
基本信息
- 批准号:10890956
- 负责人:
- 金额:$ 6.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAcute DiseaseAcute Renal Failure with Renal Papillary NecrosisAdmission activityAlgorithmsAwardBayesian NetworkCaringChronic Kidney FailureClinicalClinical DataComplexComplicationComputational algorithmComputer ModelsDataData ScienceData ScientistData SetDecision MakingDevelopmentDiagnosisDimensionsElectronic Health RecordElectronicsEpidemiologyEvaluationFoundationsGoalsGuidelinesHealthHealthcareHospitalizationIndividualInstitutionInvestigationKidneyKidney DiseasesKnowledgeMedicalMentorsMethodsMissionModelingMulticenter StudiesNatural HistoryOutcomePatient CarePatient-Focused OutcomesPatientsPhenotypePhysiologicalPreventive therapyProbabilityProcessRecordsRecoveryRenal functionResearchResourcesRiskRisk FactorsSeriesSeveritiesTechnologyTestingTimeTrainingTraining ProgramsTreatment ProtocolsUnited States National Institutes of HealthValidationadjudicationadverse outcomecareercomputable phenotypesdata repositoryepidemiology studyhospital careimprovedimproved outcomeinnovationinter-institutionalmachine learning methodmortalityphenotyping algorithmpredictive toolsprognosticationskillsstatistical and machine learningstatisticstherapy developmenttooltranslational scientist
项目摘要
Project Summary
A key aim of this proposal is to equip the candidate, Dr.Ozrazgat Baslanti, with the necessary protected time and
additional training and resources to develop her skillset on quantitative methods and understanding of underlying
mechanism of progression of kidney disease and facilitate her transition to an independent translational
researcher in health care. The long-term career goal is to become an independent data scientist, with a focus
on hospital care for acute disease and complications arising from that care. The overall objective of this
application is to build the foundation of the analytical approach for identifying patients’ health trajectories during
episode of acute hospitalization and quantifying the transitions in health states that can be applied to any acute
illness. Our central hypothesis is that using kidney health as a paradigm for this approach we can determine
individual states of change in kidney health during hospitalization using longitudinal, highly granular temporal
data in electronic health records, determine transition probabilities to more severe stages of acute and chronic
kidney disease, and improve understanding of the underlying processes influencing these transitions. Current
diagnosis and risk evaluation for acute kidney injury (AKI) are focused on determination of severity of AKI episode
and an integrated framework for assessing renal recovery does not exist. There is a clear lack of research on
estimating transition probabilities among different states of kidney health through nonlinear and non-normal time-
dependent domains using longitudinal electronic health records data. The complexity of underlying processes
influencing the transition probabilities from renal risk to more severe stages of acute and chronic kidney disease
requires application of advanced computational models in sufficiently large and granular datasets. The specific
aims of the proposal are: Aim 1- Expand and validate computable phenotypes of kidney health in large-scale
medical data. Aim 2- Determine the epidemiology and clinical outcomes of changes in kidney health. Aim 3-
Develop and validate probabilistic graphical models to predict transition through the states of kidney health and
identify risk factors for progression. The proposed research is significant as we will have phenotyping algorithms
of kidney health, validated in multi-center study, that can enhance their inter-institutional sharing and that enable
to study epidemiology and outcomes of changes in kidney health. The approach is innovative because it
implements technological advances in data science and statistics in innovative steps to develop and validate a
phenotyping algorithm that determines computable phenotypes of changes in kidney health and graphical
models to predict transition through the states of kidney health through nonlinear and non-normal time-
dependent domains using highly granular electronic health records. This will provide foundation for changes in
the care of patients with AKI, through identification of those patients at risk of developing AKI and progressing to
acute and chronic kidney disease. On completion of the proposed investigations the deliverables will be new
knowledge and a diagnosis and prognostication tool for kidney health.
项目摘要
该提案的关键目的是为候选人ozrazgat Baslanti Dr.
额外的培训和资源以发展定量方法的技能和对基础的理解
肾脏疾病进展的机制,并促进她向独立翻译过渡
卫生保健研究人员。长期职业目标是成为一名独立数据科学家,重点
医院护理急性疾病和由此护理引起的并发症。总体目标
应用是为识别患者的健康轨迹的分析方法的基础
急性住院的发作并量化可以应用于任何急性的健康状态中的过渡
疾病。我们的中心假设是,将肾脏健康作为这种方法的范式,我们可以确定
使用纵向,高度颗粒状临时的住院期间肾脏健康变化的个别状态
电子健康记录中的数据,确定过渡可能性到更严重的急性和慢性阶段
肾脏疾病,并改善对基本过程的理解会影响这些转变。当前的
急性肾脏损伤(AKI)的诊断和风险评估重点是确定AKI发作的严重程度
并且不存在用于评估肾脏回收的综合框架。显然缺乏研究
通过非线性和非正常时间 -
使用纵向电子健康记录数据的依赖域。基础过程的复杂性
影响从肾风险到更严重急性和慢性肾脏疾病的过渡可能性
需要在足够大的颗粒数据集中应用高级计算模型。具体
该提案的目的是:目标1-大规模扩展和验证可计算的肾脏健康表型
医疗数据。目标2-确定肾脏健康变化的流行病学和临床结果。瞄准3-
开发和验证概率图形模型,以预测通过肾脏健康状态和
确定进展的危险因素。拟议的研究很重要,因为我们将具有表型算法
在多中心研究中验证的肾脏健康,可以增强其机构间的共享
研究流行病学和肾脏健康变化的结果。这种方法是创新的,因为它
在创新的步骤中实现数据科学和统计数据的技术进步,以开发和验证
确定肾脏健康和图形变化的可计算表型的表型算法
通过非线性和非正常时间通过肾脏健康状态预测过渡的模型
使用高度颗粒状电子健康记录的依赖域。这将为改变的基础
通过确定那些患有AKI的风险并发展到的患者的护理
急性和慢性肾脏疾病。拟议调查完成后,可交付成果将是新的
知识以及肾脏健康的诊断和提示工具。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Clinical Considerations for Patients Experiencing Acute Kidney Injury Following Percutaneous Nephrolithotomy.
- DOI:10.3390/biomedicines11061712
- 发表时间:2023-06-14
- 期刊:
- 影响因子:4.7
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tezcan Ozrazgat Baslanti其他文献
Tezcan Ozrazgat Baslanti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tezcan Ozrazgat Baslanti', 18)}}的其他基金
Development and Validation of Computational Algorithms to Assess Kidney Health in Electronic Health Records
电子健康记录中评估肾脏健康的计算算法的开发和验证
- 批准号:
10616723 - 财政年份:2020
- 资助金额:
$ 6.39万 - 项目类别:
Development and Validation of Computational Algorithms to Assess Kidney Health in Electronic Health Records
电子健康记录中评估肾脏健康的计算算法的开发和验证
- 批准号:
10397993 - 财政年份:2020
- 资助金额:
$ 6.39万 - 项目类别:
Development and Validation of Computational Algorithms to Assess Kidney Health in Electronic Health Records
电子健康记录中评估肾脏健康的计算算法的开发和验证
- 批准号:
9891542 - 财政年份:2020
- 资助金额:
$ 6.39万 - 项目类别:
相似国自然基金
影像组学用于急性病毒性肺炎鉴别诊断的生物学机制探究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
胆碱能抗炎通路调节巨噬细胞M1/M2极化在CVB3诱导的急性病毒性心肌炎中的作用及机制研究
- 批准号:81870281
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
急性病毒感染中转录因子Tbet对TFH应答的调控及机制研究
- 批准号:31700774
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
调控巨噬细胞极化的microRNA分子鉴定及其在CVB3诱导的急性病毒性心肌炎中的作用
- 批准号:81472017
- 批准年份:2014
- 资助金额:80.0 万元
- 项目类别:面上项目
新发急性病毒性传染病免疫预防的实验研究
- 批准号:30471544
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
ラットにおける遊離皮弁再建術後の急性病態期の克服に関する研究
克服大鼠游离皮瓣重建术后急性病理阶段的研究
- 批准号:
14771151 - 财政年份:2002
- 资助金额:
$ 6.39万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Improving Acute Disease Management for Patients with Alzheimer's Disease and Related Dementias
改善阿尔茨海默病和相关痴呆症患者的急性疾病管理
- 批准号:
10712647 - 财政年份:2001
- 资助金额:
$ 6.39万 - 项目类别:
INDUCTION OF ACUTE DISEASE IN MACAQUES BY NEF GENE VARIANT OF SIVMAC239
SIVMAC239 的 NEF 基因变体在猕猴中诱导急性疾病
- 批准号:
6247642 - 财政年份:1997
- 资助金额:
$ 6.39万 - 项目类别:
INDUCTION OF ACUTE DISEASE IN MACAQUES BY NEF GENE VARIANT OF SIVMAC239
SIVMAC239 的 NEF 基因变体在猕猴中诱导急性疾病
- 批准号:
3718999 - 财政年份:
- 资助金额:
$ 6.39万 - 项目类别:
Neurophysiological alterations in multiple sclerosis patients during acute disease acivity
多发性硬化症患者急性疾病活动期间的神经生理学变化
- 批准号:
465668867 - 财政年份:
- 资助金额:
$ 6.39万 - 项目类别:
Research Grants