Microtextured prosthetic hip joints to improve longevity

微纹理假体髋关节可延长寿命

基本信息

  • 批准号:
    9021604
  • 负责人:
  • 金额:
    $ 7.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-15 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): More than 280,000 total hip replacement (THR) surgeries are performed in the US each year to treat degenerative joint diseases that cause pain and disability. This proposal focuses on metal-on-polyethylene prosthetic hip joints. The statistical survivorship of these implants declines dramatically after 15-20 years of use because the articulating surfaces wear excessively, and wear debris causes inflammation, osteolysis and mechanical instability of the implant. This lack of durability has unacceptable effects, such as risky revision surgery to replace a worn implant, or surgery postponement, which leaves the patient in pain and disability. While innovations such as cross-linked polyethylene (XLPE), or new materials for the femoral head have incrementally reduced polyethylene wear, no clinical studies demonstrate significant improvements of in-vivo longevity. Hence, while it may be perceived that great improvements have been made in implant design, in- vivo wear and longevity remain a significant problem that must be addressed. Our innovation to improving the longevity of prosthetic hip joints is to add a patterned microtexture composed of microsized spherical dimples to the smooth cobalt chromium (CoCr) femoral head. This is in stark contrast to existing methods or earlier research, which attempt to make smoother sliding surfaces, improve the design of the femoral head, or improve the mechanical properties of the polyethylene. Laser surface texturing is used to create a dense array of microsized concave features ("dimples") on the femoral head. This patterned microtexture enhances the formation of a lubricant film and increases the separation between the articulating surfaces in relative motion and, correspondingly, reduces friction and polyethylene wear. This research will test the hypothesis that microtextured CoCr surfaces articulating with XLPE will: 1) create hydrodynamic lubrication at realistic hip joint operating conditions and thus reduce friction, and 2) substantialy reduce XLPE wear to increase longevity, and reduce revision surgeries. We will first develop a theoretical lubrication model of the microtextured femoral head and the acetabular liner. Using this model, we will optimize the patterned microtexture design to maximize the separation between the articulating surfaces and minimize friction and wear. We will experimentally validate our model and obtain a working proof-of-concept of the microtextured prosthetic hip joints, for realistic in-vivo operating conditions. We will quantitatively compare the effect of different microtexture geometries on the friction coefficient and wear rate and benchmark the results against a smooth untextured bearing surface. Showing the benefits of microtextured prosthetic hip joints will have a paradigm-changing impact because by addressing prosthetic joint longevity, both patient care improvement and health care cost reduction are addressed. In addition, this technology enables design of custom implant microtextures for e.g. low and high-activity patients.
 描述(由申请人提供):美国每年进行超过 280,000 例全髋关节置换 (THR) 手术,以治疗导致疼痛和残疾的退行性关节疾病。该提案重点关注金属聚乙烯假体髋关节。这些植入物在使用 15-20 年后,其存活率会急剧下降,因为关节表面过度磨损,并且磨损碎片会导致植入物发炎、骨溶解和机械不稳定,从而缺乏耐用性。会产生不可接受的影响,例如更换磨损的植入物的危险修复手术或手术推迟,这会使患者感到疼痛和残疾,而交联聚乙烯(XLPE)或股骨头新材料等创新已逐渐减少。聚乙烯磨损,没有临床研究表明体内寿命的改善因此,虽然人们可能认为植入物设计已经取得了巨大的进步,但体内磨损和寿命仍然是我们必须解决的一个重要问题。假肢的寿命髋关节的技术是在光滑的钴铬(CoCr)股骨头上添加由微型球形凹坑组成的图案化微纹理,这与试图制造更光滑滑动表面、改善股骨设计的现有方法或早期研究形成鲜明对比。股骨头,或改善聚乙烯的机械性能,用于在股骨头上形成密集的微型凹面特征(“凹坑”)。微纹理增强了润滑膜的形成,并增加了相对运动中铰接表面之间的间隔,相应地减少了摩擦和聚乙烯磨损。这项研究将验证与 XLPE 铰接的微纹理 CoCr 表面将:1)在以下条件下产生流体动力润滑的假设。真实的髋关节操作条件,从而减少摩擦,2) 大幅减少 XLPE 磨损,延长使用寿命,并减少翻修手术。我们将首先开发微纹理的理论润滑模型。使用该模型,我们将优化图案化的微纹理设计,以最大化关节表面之间的分离并最小化摩擦和磨损。我们将通过实验验证我们的模型并获得微纹理的工作概念验证。假体髋关节,针对真实的体内操作条件,我们将定量比较不同微观纹理几何形状对摩擦系数和磨损率的影响,并将结果与​​光滑的无纹理轴承表面进行比较。展示微纹理假体髋关节的优势将产生范式改变的影响,因为通过解决假体关节的寿命问题,可以改善患者护理并降低医疗保健成本。此外,该技术还可以设计定制植入物微纹理,例如低和高关节。 -活动患者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bart Raeymaekers其他文献

Bart Raeymaekers的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
  • 批准号:
    10822202
  • 财政年份:
    2024
  • 资助金额:
    $ 7.45万
  • 项目类别:
RP1 Screen 2 Prevent
RP1 屏蔽 2 预防
  • 批准号:
    10595901
  • 财政年份:
    2023
  • 资助金额:
    $ 7.45万
  • 项目类别:
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
  • 批准号:
    10665905
  • 财政年份:
    2023
  • 资助金额:
    $ 7.45万
  • 项目类别:
Mechanisms and manipulation of force dependent behavior in T cell biology
T 细胞生物学中力依赖性行为的机制和操纵
  • 批准号:
    10681766
  • 财政年份:
    2023
  • 资助金额:
    $ 7.45万
  • 项目类别:
SORDINO-fMRI for mouse brain applications
用于小鼠大脑应用的 SORDINO-fMRI
  • 批准号:
    10737308
  • 财政年份:
    2023
  • 资助金额:
    $ 7.45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了