Mobile Application to Deliver Personalized Nutrition for the Prevention of Alzheimer's Disease
移动应用程序提供个性化营养以预防阿尔茨海默病
基本信息
- 批准号:9254310
- 负责人:
- 金额:$ 20.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAlgorithmsAllelesAlzheimer disease preventionAlzheimer&aposs DiseaseAlzheimer&aposs disease riskAmericasAndroidChronic DiseaseClinicalDataDatabasesDementiaDevelopmentDietDietary InterventionDietary intakeDiseaseEquilibriumFamily CaregiverFamily history ofFood PreferencesFrequenciesGeneticGenetic Predisposition to DiseaseGenetic RiskGenomeGenotypeGoalsGuidelinesHealthLifeLife StyleMachine LearningMissionNeurodegenerative DisordersNutrientNutritionalOutcomePathologyPatternPhasePhenotypePhysical activityPopulationPrevention GuidelinesPreventive healthcareProcessRecommendationRiskStatistical ModelsSymptomsTranslatingbasecostcost effectivedesigndigitalevidence basefightingfitnessgenetic variantlifestyle interventionmobile applicationmobile computingmortalitynutritionnutritional genomicsphysical conditioningpreventrisk varianttool
项目摘要
Genben Lifesciences (dba GB HealthWatch) is a digital health and nutritional genomics company. Our
mission is to help fight common, diet- and lifestyle-related chronic diseases with precision nutrition and
advanced mobile technologies. Our company developed the HealthWatch 360 mobile app for tracking
dietary intake, physical activity and health-related symptoms. This mobile app has received excellent
reviews for both the iOS and Android platforms and has over 70,000 registered users. Health condition-
specific goals featured in the app provide refined nutritional recommendations based on clinical
guidelines for the prevention of diet-induced, chronic diseases. Alzheimer’s disease (AD) is the leading
cause of dementia in the U.S., the 6th leading cause of mortality and a major cost to the nation, families
and caregivers. This phase I proposal is for the development of a mobile tool that will deliver
personalized nutrition and meal plans based on genetic risk in order to mitigate AD risk.
Aim 1: Develop a systematic process to identify specific dietary and nutritional components
associated with AD. Using the 1000 Genomes Phase 3 database and nutritional analyses of the
traditional diets that correspond with the 26 populations, we will analyze whether specific nutrients
correlate with the frequency of genetic variants that predispose risk of AD. We hypothesize that a
population’s fitness would be enhanced and AD risk would be lower when the genetic variants that are
selected for in a given population are in equilibrium with a diet that is enriched or depleted with the
correlated nutrient(s). We will develop statistical models that will quantify these relationships.
Aim 2: Translate nutritional patterns to a set of quantitative recommendations for AD prevention.
With the nutrient data we obtain from Aim 1, combined with other evidence-based nutrition guidelines
for AD, we will synthesize a set of qualitative and quantitative nutritional “rules” based on the app user’s
genotypes, family history of AD and other health conditions. These genotype- and/or phenotype -
specific rules will estimate ideal ranges for a given nutrient and amend the conventional “rules” (i.e.
nutritional recommendations) by the 2015-2020 Dietary Guidelines for America.
Aim 3: Mobile app for delivery of personalized meal plan for the prevention of AD. This mobile
application is designed for guided, proactive and self-executed prevention of AD, and targeted at those
who are at elevated risk. We propose developing machine-learning algorithms to create meal plans that
employ the modified nutrient ranges (from Aims 1 and 2) for a given AD risk genotype. Users will be able
to modify food preference parameters (for example, “vegetarian”) while maintaining the appropriate
nutrient ranges.
A key outcome of this project will be a platform that supports population-wide dietary intervention by
seamlessly connecting preventive healthcare with daily life in the digital age.
Genben Lifesciences (dba GB HealthWatch) 是一家数字健康和营养基因组学公司。
使命是通过精准营养和帮助对抗常见的、与饮食和生活方式相关的慢性疾病
我们公司开发了 HealthWatch 360 移动应用程序用于跟踪。
饮食摄入量、体力活动和健康相关症状这款移动应用程序受到了好评。
iOS 和 Android 平台都有评论,拥有超过 70,000 名注册用户。
该应用程序中的具体目标提供基于临床的精致营养建议
预防饮食引起的慢性疾病(AD)的指南是主要的。
在美国,痴呆症是导致死亡的第六大原因,也是国家和家庭的主要损失
第一阶段的提案是为了开发一种可提供服务的移动工具。
基于遗传风险的个性化营养和膳食计划,以降低 AD 风险。
目标 1:开发一个系统流程来识别特定的膳食和营养成分
使用 1000 个基因组第 3 阶段数据库和营养分析。
与26个人群相对应的传统饮食,我们将分析特定营养素是否
与易患 AD 风险的基因变异频率相关。
当基因变异被
在给定人群中选择的食物与富含或缺乏以下物质的饮食保持平衡
我们将开发量化这些关系的统计模型。
目标 2:将营养模式转化为一套预防 AD 的定量建议。
根据我们从目标 1 获得的营养数据,结合其他循证营养指南
对于AD,我们将根据应用程序用户的情况综合一套定性和定量的营养“规则”
基因型、AD 家族史和其他健康状况。
具体规则将估计给定营养素的理想范围并修改传统的“规则”(即
营养建议)根据 2015-2020 年美国膳食指南。
目标 3:用于提供预防 AD 的个性化膳食计划的移动应用程序。
应用程序旨在引导、主动和自我执行 AD 预防,并针对那些
我们开发了机器学习算法来制定膳食计划
用户将能够针对给定的 AD 风险基因型采用修改后的营养范围(来自目标 1 和 2)。
修改食物偏好参数(例如“素食”),同时保持适当的饮食偏好
营养范围。
该项目的一个关键成果将是建立一个平台,通过以下方式支持全民饮食干预:
将预防性医疗保健与数字时代的日常生活无缝连接。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li Shen其他文献
Li Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li Shen', 18)}}的其他基金
Mobile Application to Deliver Personalized Nutrition for the Prevention of Alzheimer's Disease
移动应用程序提供个性化营养以预防阿尔茨海默病
- 批准号:
9518200 - 财政年份:2016
- 资助金额:
$ 20.55万 - 项目类别:
相似国自然基金
随机阻尼波动方程的高效保结构算法研究
- 批准号:12301518
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大规模黎曼流形稀疏优化算法及应用
- 批准号:12371306
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
- 批准号:62304037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于物理信息神经网络的雷达回波资料反演蒸发波导算法研究
- 批准号:42305048
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Leveraging biobank-scale whole-genome sequencing for polygenic risk prediction
利用生物库规模的全基因组测序进行多基因风险预测
- 批准号:
10716534 - 财政年份:2023
- 资助金额:
$ 20.55万 - 项目类别:
Development of an Efficient High Throughput Technique for the Identification of High-Impact Non-Coding Somatic Variants Across Multiple Tissue Types
开发一种高效的高通量技术,用于鉴定跨多种组织类型的高影响力非编码体细胞变异
- 批准号:
10662860 - 财政年份:2023
- 资助金额:
$ 20.55万 - 项目类别:
The predicative values of vascular and metabolic disorders for risk of incident mild cognitive impairment and dementia
血管和代谢紊乱对发生轻度认知障碍和痴呆风险的预测价值
- 批准号:
10661996 - 财政年份:2023
- 资助金额:
$ 20.55万 - 项目类别:
Contributions of autophagy-related genes in lupus
自噬相关基因在狼疮中的贡献
- 批准号:
10682136 - 财政年份:2023
- 资助金额:
$ 20.55万 - 项目类别: