Investigating the mechanism of self-organized cortical patterning in an artificial cortex

研究人工皮质中自组织皮质模式的机制

基本信息

  • 批准号:
    10861462
  • 负责人:
  • 金额:
    $ 24.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-22 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

The cell cortex underlies essential cellular functions, including cell shape changes that facilitate cell division. Comprised of a meshwork of filamentous actin (F-actin) and the plasma membrane, the cortex is remodeled during cytokinesis, physically dividing the cell in two. Recent work has shown that prior to large-scale remodeling, the cortex is also dynamically patterned with coherent subcellular waves of the small GTPase RhoA and F-actin, a phenomenon termed “cortical excitability”. In developing embryos, these waves appear over the entire surface of the cell and then feed into the cytokinetic furrow as cell division progresses and have been proposed to support the rapid and flexible establishment of the division plane. Investigating the mechanisms that support and regulate cortical patterning is currently limited by a lack of technical approaches that can bridge our understanding of biochemical feedback signaling and cortical pattern formation, including the molecular regulation of signaling molecules, membrane dynamics, and cytoskeletal remodeling. A breakthrough in this gap in knowledge has been the development by the applicant of an “artificial cortex”, made from supported lipid bilayers (SLBs) and Xenopus egg extract, which successfully reconstitutes active Rho and F-actin dynamics in a cell-free system. Like in vivo cortical excitability, patterning in the artificial cortex depends on Rho activity and F-actin polymerization. This novel, synthetic approach to investigating cortical patterning is an ideal system for systematically examining the role of individual factors (such as upstream GTPase regulators, membrane composition and fluidity, cell cycle state) in regulating cortical dynamics. Using the artificial cortex as a model for cortical patterning, this proposal for a MOSAIC K99/R00 Award seeks to understand how cortical pattern formation is regulated and how patterning remodels the cell cortex to perform essential functions like cytokinesis. Dr. Landino will investigate the factors that drive cortical wave formation (Aim 1), cytoskeletal remodeling at the cortex (Aim 2), and the role of cortical patterning in supporting successful cell division (Aim 3). The results of this work will expand our knowledge of the molecular regulation of the cortex underlying the emergence of cortical excitability, and the role of dynamic patterning in cell division. Dr. Landino's long-term career goal is to establish an independent research group investigating the mechanisms that regulate cortical patterning and cell division. The proposed training will provide Dr. Landino with additional scientific expertise, including technical training in electron microscopy and preparation of cycling extract, and further establish the artificial cortex as a useful platform for understanding the biochemical and structural regulation of the cell cortex. This award will further Dr. Landino's professional development including formal training in research laboratory management, leading a diverse, equitable, and inclusive workplace, and a tailored plan to support Dr. Landino's application to faculty positions. The exemplary scientific and professional environment at the University of Michigan is ideally suited to support the training outlined in this proposal and ensure Dr. Landino's success in launching an independent research program.
细胞皮质是必需的细胞功能的基础,包括促进细胞分裂的细胞形状变化。由丝状肌动蛋白(F-肌动蛋白)和质膜组成,在细胞球运动过程中重塑皮质,将细胞分为两者。最近的工作表明,在大规模重塑之前,皮层还用小的GTPase RhoA和F-肌动蛋白的相干亚细胞波动态图案,这一现象称为“皮质兴奋性”。在发育的胚胎中,这些波会出现在整个细胞的表面上,然后随着细胞分裂的发展而进食细胞动力学沟,并已提出以支持分裂平面的快速,灵活建立。目前,研究支持和调节皮质模式的机制受到缺乏技术方法的限制,这些方法可以弥合我们对生化反馈信号传导和皮质模式形成的理解,包括信号分子,膜动力学和细胞骨架重塑的分子调节。知识差距的突破是通过使用支持的脂质双层(SLB)和Xenopus鸡蛋提取物制成的“人造皮层”的发展,它们成功地重构了无细胞系统中的主动Rho和F-Actin动力学。像体内皮质令人兴奋一样,人工皮质中的图案取决于Rho活性和F-肌动蛋白聚合。这种研究皮质模式的新型合成方法是系统地检查单个因素(例如上游GTPase调节剂,膜组成和流动性,细胞周期状态)在控制皮质动力学中的作用的理想系统。使用人工皮质作为皮质模式的模型,镶嵌K99/R00奖的该建议旨在了解如何调节皮质模式形成,以及如何对细胞皮质进行构图以执行细胞因子等基本功能。兰迪诺博士将研究驱动皮质波的形成的因素(AIM 1),在皮质上的细胞骨架重塑(AIM 2)以及皮质模式在支持成功细胞分裂中的作用(AIM 3)。这项工作的结果将扩大我们对皮质兴奋出现的皮质分子调节的了解,以及动态模式在细胞分裂中的作用。兰迪诺博士的长期职业目标是建立一个独立的研究小组,调查调节皮质图案和细胞分裂的机制。拟议的培训将为Landino博士提供更多的科学专业知识,包括电子显微镜的技术培训和循环提取物的准备,并进一步建立人造皮质作为理解细胞皮质的生化和结构调节的有用平台。该奖项将进一步进一步兰迪诺博士的专业发展,包括在研究实验室管理方面的正式培训,领导多样性,公平和包容性的工作场所,以及量身定制的计划,以支持兰迪诺博士在教师职位上的申请。密歇根大学的典范科学和专业环境非常适合支持本提案中概述的培训,并确保Landino博士在启动独立研究计划方面的成功。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Elaine Landino其他文献

Jennifer Elaine Landino的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennifer Elaine Landino', 18)}}的其他基金

Investigating the mechanism of self-organized cortical patterning in an artificial cortex
研究人工皮质中自组织皮质模式的机制
  • 批准号:
    10656543
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:
Investigating the mechanism of self-organized cortical patterning in an artificial cortex
研究人工皮质中自组织皮质模式的机制
  • 批准号:
    10514875
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:

相似国自然基金

皮层下母源复合体SCMC维持卵子基因组完整性的机制及在卵子老化过程中的作用
  • 批准号:
    31801240
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
PLK1和Aurora-A的SUMO化修饰对年龄相关卵母细胞非整倍性的作用机制研究
  • 批准号:
    31860329
  • 批准年份:
    2018
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
老龄化卵子非整倍性产生的精确分子机制
  • 批准号:
    81601274
  • 批准年份:
    2016
  • 资助金额:
    17.5 万元
  • 项目类别:
    青年科学基金项目
水稻非整倍性基因组表达与表观遗传调控特征研究
  • 批准号:
    31571266
  • 批准年份:
    2015
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
诱导染色体不稳定与非整倍性的Ska1蛋白影响前列腺癌发生与发展的机制研究
  • 批准号:
    81302235
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mechanics of Cells & Tissues impact Chromosome Instability & Phagocytic Interactions
细胞力学
  • 批准号:
    10626283
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Investigating the mechanism of self-organized cortical patterning in an artificial cortex
研究人工皮质中自组织皮质模式的机制
  • 批准号:
    10656543
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:
Investigating the mechanism of self-organized cortical patterning in an artificial cortex
研究人工皮质中自组织皮质模式的机制
  • 批准号:
    10514875
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:
Mechanistic Analysis of Cytokinesis in Eukaryotes
真核生物细胞分裂的机制分析
  • 批准号:
    9316658
  • 财政年份:
    2015
  • 资助金额:
    $ 24.9万
  • 项目类别:
Mechanistic Analysis of Cytokinesis in Eukaryotes
真核生物细胞分裂的机制分析
  • 批准号:
    9119026
  • 财政年份:
    2015
  • 资助金额:
    $ 24.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了