An Accurate Machine Learning Framework for Childhood Acute Myeloid Leukemia Subtype Identification by Integrating Bulk and Single-Cell Multi-Omics Data Within and Beyond the CCDI Ecosystem
通过整合 CCDI 生态系统内外的大量和单细胞多组学数据,构建准确的机器学习框架,用于儿童急性髓性白血病亚型识别
基本信息
- 批准号:10879909
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-09-05 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:Acute Myelocytic LeukemiaAddressAdministrative SupplementAdolescent and Young AdultAwardBioinformaticsBiological MarkersBone marrow failureCancer Center Support GrantCellsChildhoodChildhood Acute Myeloid LeukemiaClassificationClinicalClonal ExpansionComputational BiologyConsumptionCytogenetic AnalysisDataDetectionDiagnosisEcosystemEpigenetic ProcessFoundationsGene TransferGenesGenomicsGoalsHealthcareHematopathologyHematopoiesisHematopoietic NeoplasmsImmunophenotypingImpairmentIntelligenceInternationalKnowledgeLearningMachine LearningMalignant Childhood NeoplasmMalignant NeoplasmsMedical ImagingMethodsModelingMolecularMolecular ProfilingMorphologyMultiomic DataMutationMyelogenousNeurosciencesOutcomeParentsPatientsPerformancePositioning AttributeProcessPrognosisResearchSamplingSelection for TreatmentsTimeanticancer researchbiomarker discoverycancer subtypescancer typecell typecostcost effectivedeep learningdiverse dataepigenomicsexperienceflexibilitygenetic signatureimage processingimprovedindividualized medicinekernel methodsleukemialeukemia/lymphomamachine learning frameworkmachine learning methodmachine learning modelmultidisciplinarymultimodalitymultiple omicsnext generation sequencingnovelrare cancerrisk stratificationsingle cell analysissingle-cell RNA sequencingspecific biomarkerstherapy designtranscriptome sequencingtranscriptomicstreatment optimization
项目摘要
Abstract
As a fatal childhood hematopoietic malignancy characterized by clonal expansion of immature myeloid
precursors, acute myeloid leukemia (AML) usually leads to bone marrow failure and impaired hematopoiesis.
AML has multiple distinct subtypes characterized by morphological, molecular, and genetic alterations.
Identifying AML subtypes can facilitate downstream risk stratification and tailored treatment design. While various
conventional methods like morphological analysis, cytogenetic analysis, immunophenotyping, or molecular
profiling have been used for AML subtype identification, they are usually costly, time-consuming, labor-intensive,
and sometimes inaccurate. Recent progress has witnessed the application of next generation sequencing (NGS)
for identifying AML subtypes, but they are limited to bulk NGS data, or single omics data only. With tons of omics
data being generated within and beyond the Childhood Cancer Data Initiative (CCDI) ecosystem, we
hypothesize that integration of single-cell and bulk multi-omics data including genomics, transcriptomics, and
epigenetics data will significantly facilitate subtype-specific biomarker discovery and boost the accuracy of AML
subtype identification. Under our parent award (CA036727), in this supplemental project, we propose to
develop an integrated machine learning (ML) framework for accurate and cost-effective AML subtype
identification by combining bulk and single-cell multi-omics data within and beyond CCDI ecosystem.
To achieve this, we plan to undertake two specific aims. In Aim 1, we will establish a knowledge-transfer ML
model that leverages large-scale bulk and single-cell transcriptomics data for AML subtype identification. Besides
identifying well-annotated AML subtypes, we will also explore novel AML subtypes by detecting rare cell types
from large-scale single cell data, from which cluster-specific and rare-cell-type specific gene signatures can be
transferred to the bulk transcriptomics data for improving performance of AML subtype identification. In Aim 2,
we will develop a multi-kernel learning and a multi-modal deep learning framework to systematically and
automatically integrate deep information related with AML subtypes from single-cell and bulk multi-omics data
(including genomics, transcriptomics, epigenomics) to further boost AML subtype identification. Our model is
flexible to tackle cases when only partial or incomplete multi-omics data are available for new patients. We
believe successful completion of this study will have direct impacts on improving downstream childhood AML
risk stratification, facilitating diagnosis and prognosis, and optimizing treatment selection. We also expect that
our proposed framework in this study can be customized and extensible to identifying subtypes of other pediatric,
adolescent, and young adult (AYA) cancers especially ultra-rare tumors.
抽象的
作为一种致命的儿童造血系统恶性肿瘤,其特征是未成熟骨髓细胞的克隆性扩张
急性髓系白血病(AML)通常会导致骨髓衰竭和造血功能受损。
AML 有多种不同的亚型,其特征是形态、分子和遗传改变。
识别 AML 亚型可以促进下游风险分层和定制治疗设计。虽然各种
常规方法,如形态学分析、细胞遗传学分析、免疫表型分析或分子分析
分析已被用于 AML 亚型识别,它们通常成本高昂、耗时、劳动密集型,
有时不准确。最新进展见证了下一代测序(NGS)的应用
用于识别 AML 亚型,但仅限于批量 NGS 数据或单个组学数据。拥有大量组学
数据是在儿童癌症数据倡议 (CCDI) 生态系统内部和外部生成的,我们
假设单细胞和大量多组学数据(包括基因组学、转录组学和
表观遗传学数据将显着促进亚型特异性生物标志物的发现并提高 AML 的准确性
亚型识别。根据我们的家长奖(CA036727),在这个补充项目中,我们建议
为准确且经济高效的 AML 子类型开发集成机器学习 (ML) 框架
通过结合 CCDI 生态系统内外的批量和单细胞多组学数据进行识别。
为了实现这一目标,我们计划实现两个具体目标。在目标 1 中,我们将建立知识转移 ML
该模型利用大规模批量和单细胞转录组数据进行 AML 亚型识别。除了
在识别注释良好的 AML 亚型的同时,我们还将通过检测稀有细胞类型来探索新的 AML 亚型
来自大规模单细胞数据,可以从中获得簇特异性和稀有细胞类型特异性基因特征
转移到大量转录组数据以提高 AML 亚型识别的性能。在目标 2 中,
我们将开发多内核学习和多模态深度学习框架来系统地、
自动集成来自单细胞和批量多组学数据的与 AML 亚型相关的深层信息
(包括基因组学、转录组学、表观基因组学)进一步促进 AML 亚型识别。我们的模型是
当新患者只有部分或不完整的多组学数据可用时,可以灵活地处理病例。我们
相信这项研究的成功完成将对改善下游儿童 AML 产生直接影响
风险分层,促进诊断和预后,优化治疗选择。我们也期望
我们在这项研究中提出的框架可以定制和扩展,以识别其他儿科的亚型,
青少年和青年 (AYA) 癌症,尤其是极其罕见的肿瘤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joann B. Sweasy其他文献
Joann B. Sweasy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joann B. Sweasy', 18)}}的其他基金
Assessing the role of the DNA repair landscape in immune checkpoint therapy
评估 DNA 修复景观在免疫检查点治疗中的作用
- 批准号:
9317114 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
The Role of a PARP1 Genetic Variant in Development of Lupus
PARP1 基因变异在狼疮发展中的作用
- 批准号:
9251237 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
The Role of a PARP1 Genetic Variant in Development of Lupus
PARP1 基因变异在狼疮发展中的作用
- 批准号:
9092164 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM)Research Core - EIS
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686546 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Assessing the real-world impact of a low nicotine product standard for smoked tobacco in New Zealand
评估新西兰低尼古丁产品标准对吸食烟草的现实影响
- 批准号:
10665851 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Supplement for Cloud Computing: Alcohol Use Disorder Treatment Simulation
云计算补充:酒精使用障碍治疗模拟
- 批准号:
10827563 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
A Longitudinal Qualitative Study of Fentanyl-Stimulant Polysubstance Use Among People Experiencing Homelessness (Administrative supplement)
无家可归者使用芬太尼兴奋剂多物质的纵向定性研究(行政补充)
- 批准号:
10841820 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Programs for the Training and Advancement of the Next GENeration of Native Researchers in Genetics, Ethics and Society
下一代本土遗传学、伦理学和社会研究人员的培训和提升计划
- 批准号:
10841760 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别: