Computing, Optimizing, and Evaluating Quantitative Cancer Imaging Biomarkers
计算、优化和评估定量癌症成像生物标志物
基本信息
- 批准号:8960049
- 负责人:
- 金额:$ 65.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:Algorithmic SoftwareAlgorithmsArchitectureBiologicalBiological MarkersCancer BiologyClinicalClinical DataClinical TrialsCommunitiesComputer softwareComputer-Assisted Image AnalysisDataData SetDevelopmentEastern Cooperative Oncology GroupEvaluationFailureFollicular LymphomaFundingGene ExpressionGenerationsGenomicsHealthHumanImageInvestigationJavaLanguageLesionLibrariesLinkLocationMachine LearningMalignant NeoplasmsMeasurementMetabolicModalityMolecularMulti-Institutional Clinical TrialNon-Small-Cell Lung CarcinomaOutcomePatientsPharmaceutical PreparationsPhenotypePlug-inPositron-Emission TomographyProgression-Free SurvivalsPythonsRNA SequencesRadiogenomicsResearchResearch InfrastructureResearch PersonnelResourcesRoleScienceShapesSpecific qualifier valueSystemTherapeuticTimeTissue SurvivalTissuesTumor Burdenbasecancer genomicscancer imagingcancer therapycloud baseddisorder subtypeimage archival systemimage processingimaging biomarkerimaging modalityimprovedinterestnovelnovel therapeuticsoncologyopen sourcepredictive modelingpublic health relevancequantitative imagingrepositoryresponsestatisticssuccesstooltranscriptome sequencingtreatment responsetumorvectorweb based interface
项目摘要
DESCRIPTION (provided by applicant): The Quantitative Imaging Network (QIN) is a consortium of centers developing quantitative image features, which are proving to be valuable biomarkers of the underlying cancer biology and that can be used for assessing response to treatment and predicting clinical outcome. It is now important to discover the best quantitative imaging features for detection of response to therapeutics, to identify subtypes of cancer, and to correlate with cancer genomics. However, progress is thwarted by the lack of shared software algorithms, architectures, and resources required to compute, compare, evaluate, and disseminate these quantitative imaging features within the QIN and the broader community. We propose to develop the Quantitative Imaging Feature Pipeline (QIFP), a cloud-based, open source platform that will give researchers free access to these capabilities and hasten the introduction of quantitative image biomarkers into single- and multi-center clinical trials. The QIFP will facilitate assessment of the incremental value of new vs. existing image feature sets. It
will also allow researchers to add their own algorithms to compute novel quantitative image features in their own studies and to disseminate them to the greater research community. To accomplish this: (1) We will create an expandable library of quantitative imaging feature algorithms capable of comprehensive characterization of the imaging phenotype of cancer. It will support a broad set of imaging modalities and algorithms implemented in a variety of languages, including algorithms that provide volumetric and time-varying assessment of lesion size, shape, edge sharpness, and pixel statistics. (2) We will build a cloud-based software architecture for creating, executing, and comparing quantitative image feature-generating pipelines, including algorithms in the library and/or those supplied by QIN or other researchers as plug-ins. QIFP will also have (a) a machine learning engine that lets users specify a dependent variable (e.g., progression-free survival) that the quantitative image features can used to predict, and (b) an evaluation engine that compares the utility of particular features for predicting the dependent variable. (3) We will assess the QIFP in four ways: (a) by its ability to recapitulate the role of known biomarkers in a related clinical trial, (b) by comparing linear measurement, metabolic tumor burden and novel combinations of the features in our library for predicting one-year progression-free survival, (c) by merging imaging features with known host-, drug- and tumor-based follicular lymphoma biomarkers in order to develop the most robust and integrative predictive model for patient outcomes, and (d) by using the QIFP to combine and to evaluate image feature algorithms developed by another QIN team and our own NCI- funded team in the study of radiogenomics of non-small cell lung cancer. The QIFP will fill a substantial gap in the science currently being carried out in the QIN and in the community by providing the tools and infrastructure to assess the value of novel quantitative imaging features of cancer, and will thereby accelerate incorporating new imaging biomarkers into single and multi-center clinical trials and into oncology practice.
描述(由申请人提供):定量成像网络(QIN)是一个定量中心联盟,被证明是潜在癌症生物学的有价值的生物标志物,可用于开发评估治疗反应和预测临床结果。现在发现用于检测治疗反应、识别癌症亚型以及与癌症基因组学关联的最佳定量成像特征非常重要,然而,由于缺乏共享软件算法,进展受到阻碍。我们建议开发定量成像特征管道(QIFP),这是一个基于云的开源平台,将提供计算、比较、评估和传播这些定量成像特征所需的架构和资源。研究人员可以免费使用这些功能,并加快将定量图像生物标志物引入单中心和多中心临床试验,这将有助于评估新图像特征集与现有图像特征集的增量价值。
还将允许研究人员在自己的研究中添加自己的算法来计算新颖的定量图像特征,并将其传播到更大的研究社区。为了实现这一目标:(1)我们将创建一个可扩展的定量成像算法特征库,能够提供全面的功能。它将支持以多种语言实现的广泛的成像模式和算法,包括提供病变大小、形状、边缘清晰度和像素统计数据的体积和时变评估的算法2。 )我们将建造用于创建、执行和比较定量图像特征生成管道的基于云的软件架构,包括库中的算法和/或 QIN 或其他研究人员作为插件提供的算法。 (3) 我们将从四个方面评估 QIFP方式:(a)通过其在相关临床试验中概括已知生物标志物的作用的能力,(b)通过比较线性测量、代谢肿瘤负荷和我们库中特征的新颖组合来预测一年无进展生存期,(c) 通过将成像特征与已知的基于宿主、药物和肿瘤的滤泡性淋巴瘤生物标志物相结合,以便为患者结果开发最稳健和综合的预测模型,以及 (d) 通过使用 QIFP 来组合和评估图像特征QIFP 是由另一个 QIN 团队和我们自己的 NCI 资助的团队在非小细胞肺癌放射基因组学研究中开发的算法,通过提供评估癌症新成像特征价值的工具和基础设施,并将加速将新的成像生物标志物纳入单中心和多中心定量临床试验以及肿瘤学实践中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SANDY A. NAPEL其他文献
SANDY A. NAPEL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SANDY A. NAPEL', 18)}}的其他基金
Computing, Optimizing, and Evaluating Quantitative Cancer Imaging Biomarkers
计算、优化和评估定量癌症成像生物标志物
- 批准号:
9132190 - 财政年份:2015
- 资助金额:
$ 65.26万 - 项目类别:
Computing, Optimizing, and Evaluating Quantitative Cancer Imaging Biomarkers
计算、优化和评估定量癌症成像生物标志物
- 批准号:
9753130 - 财政年份:2015
- 资助金额:
$ 65.26万 - 项目类别:
Computing, Optimizing, and Evaluating Quantitative Cancer Imaging Biomarkers
计算、优化和评估定量癌症成像生物标志物
- 批准号:
9324146 - 财政年份:2015
- 资助金额:
$ 65.26万 - 项目类别:
Tools for Linking and Mining image and Genomic Data in Non-Small Cell Lung Cancer
用于链接和挖掘非小细胞肺癌图像和基因组数据的工具
- 批准号:
8693964 - 财政年份:2011
- 资助金额:
$ 65.26万 - 项目类别:
Tools for Linking and Mining image and Genomic Data in Non-Small Cell Lung Cancer
用于链接和挖掘非小细胞肺癌图像和基因组数据的工具
- 批准号:
8332267 - 财政年份:2011
- 资助金额:
$ 65.26万 - 项目类别:
Tools for Linking and Mining image and Genomic Data in Non-Small Cell Lung Cancer
用于链接和挖掘非小细胞肺癌图像和基因组数据的工具
- 批准号:
8153431 - 财政年份:2011
- 资助金额:
$ 65.26万 - 项目类别:
Tools for Linking and Mining image and Genomic Data in Non-Small Cell Lung Cancer
用于链接和挖掘非小细胞肺癌图像和基因组数据的工具
- 批准号:
8513277 - 财政年份:2011
- 资助金额:
$ 65.26万 - 项目类别:
Tools for Linking and Mining image and Genomic Data in Non-Small Cell Lung Cancer
用于链接和挖掘非小细胞肺癌图像和基因组数据的工具
- 批准号:
8889206 - 财政年份:2011
- 资助金额:
$ 65.26万 - 项目类别:
Improving Radiologist Detection of Lung Nodules with CAD
使用 CAD 改进放射科医生对肺结节的检测
- 批准号:
7367836 - 财政年份:2005
- 资助金额:
$ 65.26万 - 项目类别:
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 65.26万 - 项目类别:
Leveraging artificial intelligence/machine learning-based technology to overcome specialized training and technology barriers for the diagnosis and prognostication of colorectal cancer in Africa
利用基于人工智能/机器学习的技术克服非洲结直肠癌诊断和预测的专业培训和技术障碍
- 批准号:
10712793 - 财政年份:2023
- 资助金额:
$ 65.26万 - 项目类别:
A Multi-Modal Wearable Sensor for Early Detection of Cognitive Decline and Remote Monitoring of Cognitive-Motor Decline Over Time
一种多模态可穿戴传感器,用于早期检测认知衰退并远程监控认知运动随时间的衰退
- 批准号:
10765991 - 财政年份:2023
- 资助金额:
$ 65.26万 - 项目类别:
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
- 批准号:
10839518 - 财政年份:2023
- 资助金额:
$ 65.26万 - 项目类别: