Training in Theory and Computation for Next Generation Neuroscientists
下一代神经科学家的理论和计算培训
基本信息
- 批准号:10879209
- 负责人:
- 金额:$ 24.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AppointmentBehaviorBiologyBrainChicagoCodeCommunitiesCompetenceComplementComputersDataData SetDisciplineDoctor of PhilosophyDrynessEducational StatusElectronicsEngineeringEnsureEnvironmentExposure toFacultyFosteringFundingGeneticHumanInterdisciplinary StudyJournalsLaboratoriesMathematicsMicroscopyMinorMinority RecruitmentModelingNational Research Service AwardsNeurobiologyNeuronsNeurosciencesNeurosciences ResearchPsychologyResearchResearch PersonnelResearch Project GrantsSchoolsSeriesStatistical MethodsStudentsSystemTeacher Professional DevelopmentTechniquesTrainingTraining ProgramsUniversitiesWorkbrain dysfunctioncomputational neurosciencecomputer scienceexperienceexperimental studygraduate studentlaboratory experimentneuralneuromechanismnext generationprogramsresponsible research conductstatisticssummer programtheoriesundergraduate research experienceundergraduate student
项目摘要
Project Summary
To understand the function and dysfunction of the brain it is necessary to confront its complexity. Over the past
two decades the field of neuroscience has leveraged the tremendous advances in electronics, genetics, and
microscopy to collect a bewildering amount of neuronal data, especially when compared to the state of the field
at the turn of the last century. More than ever these datasets require sophisticated analysis techniques to expose
the salient aspects of brain dynamics and computation. Of equal importance is building a coherent theory of
brain function. Theory can both organize these datasets under a conceptual umbrella, as well as suggest the
next series of experiments to be performed. These realities require more neuroscience researchers to be trained
in a variety of computational and mathematical techniques. This project outlines an ambitious graduate and
undergraduate Training Program in Computational Neuroscience (TPCN) at the University of Chicago.
The University of Chicago TPCN has 31 training faculty distributed over 10 departments. The training faculty
are composed of 6 faculty in computational neuroscience (dry-lab), 9 training faculty whose laboratories are
primarily experimental, and 15 training faculty whose laboratories are both computational and experimental. At
the graduate level the TPCN offers a PhD program in Computational Neuroscience and a complementary PhD
program in Neurobiology. At the undergraduate level the University of Chicago has a highly popular Major in
Neuroscience, and students can Minor in Computational Neuroscience. The TPCN is set within a highly collegial,
cross-disciplinary environment of our Neuroscience Institute and the Grossman Center for Quantitative Biology
and Human Behavior. The Neuroscience Institute was established in 2014 to foster interdisciplinary research on
the neural mechanisms of brain function, and now comprises 87 faculty having appointments in 16 departments.
The Grossman Center was launched in 2020 and is a space within the Neuroscience Institute with an explicit
focus on computational and theoretical neuroscience. Over the next five years the Grossman Center will grow
to house 5 computational neuroscience faculty to complement our already existing community of theoretical
neuroscientists. During this funding period the TPCN will (1) strengthen the course offerings in computational
neuroscience at both the graduate and undergraduate level; (2) create a undergraduate research program in
computational neuroscience; (3) enhance our minority recruitment by taking advantage of the undergraduate
neuroscience research program.
TPCN trainees work in vertically integrated, cross-disciplinary research teams. Graduate students take a series of directed courses in computational neuroscience that span both statistical and modeling approaches. To
ensure their competency in core neuroscience principles they also take courses in cellular, systems, and behavioral neuroscience. Their training will be supplemented with courses in a relevant quantitative discipline, such as
computer science, engineering, mathematics, or statistics. All graduate students will have extended experience
in at least one experimental laboratory, and they take part in journal clubs and seminars within the University
of Chicago Neuroscience community. Supported undergraduates take courses in mathematics, computer programming, statistics, and neuroscience; they take an additional course in neuroscience or psychology and two
courses in Computational Neuroscience; and they complete a research project. In addition, they complete the
TPCN summer program. Undergraduate trainees in the summer program go through the boot camp on topics in
computational neuroscience, including tutorials in Matlab, statistical methods, fundamentals of differential equations, and ideas of neural coding; they then complete a research project under careful guidance. All trainees
will receive training in responsible conduct of research. Across 5 years of funding, the TPCN supports 20 NRSA
graduate students, 10 non-NRSA graduate students, 30 undergraduate school-year and 30 summer fellows.
项目概要
要了解大脑的功能和功能障碍,有必要面对它的复杂性。过去的事
二十年来,神经科学领域利用了电子学、遗传学和
显微镜收集大量令人眼花缭乱的神经元数据,特别是与现场状态相比
在上世纪之交。这些数据集比以往任何时候都更需要复杂的分析技术来揭示
大脑动力学和计算的突出方面。同样重要的是建立一个连贯的理论
大脑功能。理论既可以在概念框架下组织这些数据集,也可以提出建议
接下来要进行的一系列实验。这些现实需要培训更多的神经科学研究人员
各种计算和数学技术。该项目概述了一位雄心勃勃的毕业生和
芝加哥大学计算神经科学(TPCN)本科生培训项目。
芝加哥大学 TPCN 拥有 31 名培训教师,分布在 10 个院系。培训师资队伍
由 6 名计算神经科学教师(干实验室)和 9 名培训教师组成,其实验室为
主要是实验性的,还有 15 名培训教师,他们的实验室既是计算实验室又是实验实验室。在
TPCN 研究生阶段提供计算神经科学博士课程和补充性博士课程
神经生物学计划。在本科阶段,芝加哥大学有一个非常受欢迎的专业:
神经科学,学生可以辅修计算神经科学。 TPCN 建立在一个高度学院化、
我们的神经科学研究所和格罗斯曼定量生物学中心的跨学科环境
和人类行为。神经科学研究所成立于2014年,旨在促进跨学科研究
脑功能的神经机制,目前由 16 个系的 87 名教职人员组成。
格罗斯曼中心于 2020 年启动,是神经科学研究所内的一个空间,具有明确的
专注于计算和理论神经科学。未来五年格罗斯曼中心将不断发展
容纳 5 名计算神经科学教师,以补充我们现有的理论社区
神经科学家。在此资助期间,TPCN 将 (1) 加强计算方面的课程设置
研究生和本科生的神经科学; (二)设立本科生科研项目
计算神经科学; (三)发挥本科生优势,加大少数民族招收力度
神经科学研究计划。
TPCN 学员在垂直整合的跨学科研究团队中工作。研究生学习一系列涵盖统计和建模方法的计算神经科学定向课程。到
确保他们掌握核心神经科学原理的能力,他们还学习细胞、系统和行为神经科学课程。他们的培训将辅以相关定量学科的课程,例如
计算机科学、工程、数学或统计学。所有研究生都将拥有丰富的经验
他们至少在一个实验实验室工作,并且参加大学内的期刊俱乐部和研讨会
芝加哥神经科学界。支持的本科生学习数学、计算机编程、统计学和神经科学课程;他们额外修读一门神经科学或心理学课程,以及两门课程
计算神经科学课程;他们完成了一个研究项目。此外,他们还完成
TPCN 暑期项目。暑期项目的本科生学员将参加有关主题的训练营
计算神经科学,包括 Matlab 教程、统计方法、微分方程基础知识和神经编码思想;然后他们在认真的指导下完成一个研究项目。所有练习生
将接受负责任的研究行为的培训。在 5 年的资助中,TPCN 支持了 20 个 NRSA
研究生、10 名非 NRSA 研究生、30 名本科生和 30 名暑期研究员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brent D. Doiron其他文献
Brent D. Doiron的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brent D. Doiron', 18)}}的其他基金
Training in Theory and Computation for Next Generation Neuroscientists
下一代神经科学家的理论和计算培训
- 批准号:
10746671 - 财政年份:2023
- 资助金额:
$ 24.72万 - 项目类别:
Cortical assembly formation through excitatory/inhibitory circuit plasticity
通过兴奋/抑制回路可塑性形成皮质组件
- 批准号:
10729689 - 财政年份:2023
- 资助金额:
$ 24.72万 - 项目类别:
Neuronal population dynamics within and across cortical areas
皮质区域内和皮质区域之间的神经元群体动态
- 批准号:
9789875 - 财政年份:2018
- 资助金额:
$ 24.72万 - 项目类别:
Circuit-based models of neuronal variability in mouse V1
小鼠 V1 神经元变异的电路模型
- 批准号:
10438692 - 财政年份:2018
- 资助金额:
$ 24.72万 - 项目类别:
Circuit-based models of neuronal variability in mouse V1
小鼠 V1 神经元变异的电路模型
- 批准号:
10231003 - 财政年份:2018
- 资助金额:
$ 24.72万 - 项目类别:
CRCNS: Formation of stimulus selective neural assemblies in piriform cortex
CRCNS:梨状皮层刺激选择性神经组件的形成
- 批准号:
9049840 - 财政年份:2015
- 资助金额:
$ 24.72万 - 项目类别:
INTERDISCIPLINARY TRAINING IN COMPUTATIONAL NEUROSCIENCE
计算神经科学跨学科培训
- 批准号:
9322706 - 财政年份:2006
- 资助金额:
$ 24.72万 - 项目类别:
INTERDISCIPLINARY TRAINING IN COMPUTATIONAL NEUROSCIENCE
计算神经科学跨学科培训
- 批准号:
9349468 - 财政年份:2006
- 资助金额:
$ 24.72万 - 项目类别:
INTERDISCIPLINARY TRAINING IN COMPUTATIONAL NEUROSCIENCE
计算神经科学跨学科培训
- 批准号:
9763514 - 财政年份:2006
- 资助金额:
$ 24.72万 - 项目类别:
INTERDISCIPLINARY TRAINING IN COMPUTATIONAL NEUROSCIENCE
计算神经科学跨学科培训
- 批准号:
9763517 - 财政年份:2006
- 资助金额:
$ 24.72万 - 项目类别:
相似国自然基金
鲍曼不动杆菌抵御黄色黏球菌捕食行为的分子机制与生物学意义
- 批准号:32370114
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
釉原蛋白丝带状组装体的淀粉样组装行为及其生物学功能特性研究
- 批准号:32301042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
孤独症易感基因缺失导致小脑发育异常和行为障碍的神经生物学机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
面向人体不同pH环境的可降解磁驱动水凝胶机器人的行为模型及生物学效应仿真
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
龙骨骨折诱导蛋鸡消极情绪的行为反应及其神经生物学机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Training in Theory and Computation for Next Generation Neuroscientists
下一代神经科学家的理论和计算培训
- 批准号:
10746671 - 财政年份:2023
- 资助金额:
$ 24.72万 - 项目类别:
Trans-megakaryocyte migration as neutrophil amplifier
作为中性粒细胞放大器的跨巨核细胞迁移
- 批准号:
10449496 - 财政年份:2022
- 资助金额:
$ 24.72万 - 项目类别:
Functional ontogeny of pair bonding neural circuits
配对神经回路的功能个体发育
- 批准号:
10704079 - 财政年份:2022
- 资助金额:
$ 24.72万 - 项目类别:
Trans-megakaryocyte migration as neutrophil amplifier
作为中性粒细胞放大器的跨巨核细胞迁移
- 批准号:
10599971 - 财政年份:2022
- 资助金额:
$ 24.72万 - 项目类别:
Functional ontogeny of pair bonding neural circuits
配对神经回路的功能个体发育
- 批准号:
10481368 - 财政年份:2022
- 资助金额:
$ 24.72万 - 项目类别: