Machine Learning and Large-scale Imaging analytics for dimensional representations of brain trajectories in aging and preclinical Alzheimer's Disease: The brain aging chart and the iSTAGING consortium
机器学习和大规模成像分析,用于衰老和临床前阿尔茨海默氏病大脑轨迹的维度表示:大脑衰老图表和 iSTAGING 联盟
基本信息
- 批准号:10839623
- 负责人:
- 金额:$ 24.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAdoptionAgingAlzheimer&aposs DiseaseApplications GrantsBiological MarkersBrainBrain MappingClassificationClinicalClinical DataCloud ComputingCognitiveCollaborationsCollectionCommunitiesComplexComputer softwareDataData AnalysesData SetDatabasesDependenceDerivation procedureDevelopmentDiffusion Magnetic Resonance ImagingDimensionsDiseaseDisease ClusteringsDropsElementsEnsureEquipmentFoundationsFunctional Magnetic Resonance ImagingFutureHeterogeneityImageImpaired cognitionIndividualInfrastructureInternetLibrariesMachine LearningMagnetic Resonance ImagingMethodsModelingOutcomes ResearchParentsPatternProcessPublic DomainsReproducibilityResearchResourcesRunningSoftware ToolsTechnical ExpertiseTrainingVertebral columnaging braincloud basedcomputerized data processingcomputing resourcesdata harmonizationdesigndisease heterogeneitydisorder subtypeexperiencefallsflexibilitygraphical user interfaceimage processingimaging biomarkerinterestmachine learning methodmachine learning modelmachine learning pipelinemodel buildingmulti-atlas segmentationmultimodalityopen sourceparent grantparent projectpersonalized diagnosticsportabilitypre-clinicalpredictive modelingpreventprognosticationprogramsrepositoryskillstooluser-friendlyweb appweb interfaceweb portalweb-accessible
项目摘要
Abstract
The parent grant has been building a truly unique database of MRI, clinical and cognitive data from over
65,000 individuals and 16 distinct studies. It has been constructing machine learning models and
biomarkers aiming to capture the heterogeneity of brain aging and derive predictive models of cognitive
decline. The current supplement will build the foundation for making these pipelines available very easily
through cloud computing. More specifically, the focus of this supplement will be to build the infrastructure
for a web-based portal running n the AWS cloud, which will allow for seamless “drag-and-drop” of MRIs
for application of the pipelines developed by the parent program. This will facilitate the wide access of
these pipelines without the need to set up local software and familiarize with complex preprocessing of
MRI datasets and machine learning pipelines.
抽象的
父母赠款一直在建立一个真正独特的MRI,临床和认知数据的数据库
65,000个人和16个不同的研究。它一直在构建机器学习模型和
生物标志物旨在捕获大脑衰老的异质性并得出认知的预测模型
衰退。当前的补充剂将为使这些管道非常容易提供基础
通过云计算。更具体地说,该补充的重点将是建立基础架构
对于一个运行AWS云的基于网络的门户,该门户将允许MRI的无缝“拖放”
用于应用父程计划开发的管道。这将有助于广泛的访问
这些管道无需设置本地软件并熟悉复杂的预处理
MRI数据集和机器学习管道。
项目成果
期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Subject-Specific Structural Parcellations Based on Randomized AB-divergences.
- DOI:10.1007/978-3-319-66182-7_47
- 发表时间:2017-09
- 期刊:
- 影响因子:0
- 作者:Honnorat N;Parker D;Tunç B;Davatzikos C;Verma R
- 通讯作者:Verma R
Embracing the disharmony in medical imaging: A Simple and effective framework for domain adaptation.
- DOI:10.1016/j.media.2021.102309
- 发表时间:2022-03
- 期刊:
- 影响因子:10.9
- 作者:Wang R;Chaudhari P;Davatzikos C
- 通讯作者:Davatzikos C
Longitudinally and inter-site consistent multi-atlas based parcellation of brain anatomy using harmonized atlases.
- DOI:10.1016/j.neuroimage.2017.10.026
- 发表时间:2018-02-01
- 期刊:
- 影响因子:5.7
- 作者:Erus G;Doshi J;An Y;Verganelakis D;Resnick SM;Davatzikos C
- 通讯作者:Davatzikos C
Modifiable vascular risk factors, white matter disease and cognition in early Parkinson's disease.
- DOI:10.1111/ene.13797
- 发表时间:2019-03
- 期刊:
- 影响因子:5.1
- 作者:Chahine LM;Dos Santos C;Fullard M;Scordia C;Weintraub D;Erus G;Rosenthal L;Davatzikos C;McMillan CT
- 通讯作者:McMillan CT
A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages.
- DOI:10.1016/j.neuroimage.2017.03.057
- 发表时间:2017-07-15
- 期刊:
- 影响因子:5.7
- 作者:Rathore S;Habes M;Iftikhar MA;Shacklett A;Davatzikos C
- 通讯作者:Davatzikos C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christos Davatzikos其他文献
Christos Davatzikos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christos Davatzikos', 18)}}的其他基金
Disentangling the anatomical, functional and clinical heterogeneity of major depression, using machine learning methods
使用机器学习方法解开重度抑郁症的解剖学、功能和临床异质性
- 批准号:
10714834 - 财政年份:2023
- 资助金额:
$ 24.38万 - 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
- 批准号:
10625442 - 财政年份:2022
- 资助金额:
$ 24.38万 - 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
- 批准号:
10421222 - 财政年份:2022
- 资助金额:
$ 24.38万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10696100 - 财政年份:2020
- 资助金额:
$ 24.38万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10263220 - 财政年份:2020
- 资助金额:
$ 24.38万 - 项目类别:
Benchmarking and Comparing AD-Related AI Methods Across Sites on a Standardized Dataset
在标准化数据集上跨站点对 AD 相关 AI 方法进行基准测试和比较
- 批准号:
10825403 - 财政年份:2020
- 资助金额:
$ 24.38万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10475286 - 财政年份:2020
- 资助金额:
$ 24.38万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10028746 - 财政年份:2020
- 资助金额:
$ 24.38万 - 项目类别:
Biomedical Image Computing and Informatics Cluster
生物医学图像计算与信息学集群
- 批准号:
9273767 - 财政年份:2017
- 资助金额:
$ 24.38万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
HIV Clinic-based Screening for Geriatric Syndromes in Older Adults with HIV
基于艾滋病毒临床的艾滋病毒感染者老年综合症筛查
- 批准号:
10761940 - 财政年份:2023
- 资助金额:
$ 24.38万 - 项目类别:
The impact of Medicaid expansion on the rural mortality penalty in the United States
医疗补助扩大对美国农村死亡率的影响
- 批准号:
10726695 - 财政年份:2023
- 资助金额:
$ 24.38万 - 项目类别:
Annual wellness visit policy: Impact on disparities in early dementia diagnosis and quality of healthcare for Medicare beneficiaries with Alzheimer's Disease and Its Related Dementias
年度健康就诊政策:对患有阿尔茨海默病及其相关痴呆症的医疗保险受益人的早期痴呆诊断和医疗质量差异的影响
- 批准号:
10729272 - 财政年份:2023
- 资助金额:
$ 24.38万 - 项目类别:
Development and Evaluation of Portable Compendium of Psychophysical and Physiological Tests for Alzheimer's Disease and Related Dementias (ADRD)
阿尔茨海默病和相关痴呆症(ADRD)便携式心理物理和生理测试纲要的开发和评估
- 批准号:
10699349 - 财政年份:2023
- 资助金额:
$ 24.38万 - 项目类别:
Structural Racism and Discrimination in the Expansion of Hospital Stroke Care Capacity: A Multi-Level Analysis on Access to Care, Treatment, and Outcomes
扩大医院中风护理能力中的结构性种族主义和歧视:对获得护理、治疗和结果的多层次分析
- 批准号:
10473300 - 财政年份:2022
- 资助金额:
$ 24.38万 - 项目类别: