Administrative Supplement for Structural Dynamics in Biology Resource Year 2
生物资源第二年结构动力学行政补充
基本信息
- 批准号:10833964
- 负责人:
- 金额:$ 18.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:3D PrintAdministrative SupplementAutomobile DrivingBehaviorBiologicalBiological ProcessBiologyCardiovascular DiseasesCeramicsCharacteristicsCommunitiesComplementCryopreservationCrystallographyData CollectionDecision MakingDevelopmentDevicesDrug TargetingElectron Microscopy FacilityEnsureExposure toG-Protein-Coupled ReceptorsGeometryGoalsIntegral Membrane ProteinLaboratoriesLightLiquid substanceMalignant NeoplasmsMapsMeasurementMeasuresMental disordersMetalloproteinsMetalsMethodsMicrofluidicsOxidation-ReductionPhysiologic pulsePlant ResinsPositioning AttributePredispositionProcessPropertyPublishingRadiationRadiation induced damageResolutionResourcesRoentgen RaysSamplingSignal TransductionSolventsSourceSpeedStructureSynchrotronsSystemTechnologyTimeTrainingTranslatingViscosityWorkbasebiomaterial compatibilitydensitydetectordrug developmentexperimental studyfabricationmetalloenzymenovelopen sourceparent grantprogramsprototyperadiation mitigationstructural biologytherapeutic development
项目摘要
Project Summary – Administrative Supplement Request – 1P41GM139687-02 – Sebastien
Boutet (PI).
This administrative supplement request is driven by overall goals and aims of the Structural
Dynamics in Biology BTRR at SLAC National Accelerator Laboratory. The BTRR is aimed at
enhancing and developing the unique capabilities of the SLAC Linac Coherent Light Source
(LCLS) for biomedical applications. The requested supplement will support a broad user base
and further the goals of the DBPs and the TR&Ds.
By overcoming the limitations of radiation damage at the synchrotron, LCLS has been particularly
impactful in the study of large macromolecular machines that form small crystals with high solvent
content, making them delicate, difficult to cryo-preserve and extremely radiation sensitive. For
example, a major breakthrough was the application of SFX to examine crystals of intrinsic
membrane proteins, such as GPCRs, grown in LCP. GPCRs are the largest group of targets for
drug development, used to treat a wide variety of illnesses (e.g. cancer, cardiovascular disease,
and mental illness). LCLS is also impactful in the study of metalloenzymes, which are critical to
nearly all biological processes and as such represent a rich target space for therapeutics
development. High-resolution structural studies of metalloproteins are particularly challenging at
the synchrotron because the metal centers, especially those that are redox active, are very
susceptible to x-ray induced photoreduction. Further, the ultrafast (~40 fs) x-ray pulses produced
by the LCLS open new possibilities in directly observing dynamic processes involved in
macromolecular function. Moreover, many of the P41-derived developments that enable the rapid
collection of data using multiple small crystals, are applicable both at LCLS and at the synchrotron
to mitigate radiation damage. By expanding the capabilities at LCLS and at the SSRL synchrotron,
the BTRR opens more macromolecular machines to structural characterization, including time-
resolved studies over a wide range of biomedically relevant time scales. Integrating with, and
enhancing the existing programs at SSRL and LCLS, the BTRR will provide support, expertise
and training to the broad biomedical community.
This administrative supplement will enhance and expand the BTRR capabilities that are provided
to general users and to the P41 driving biomedical projects. The acquisition of a high speed x-ray
chopper will fill a critical need of the BTRR for efficient use of SSRL BL12-1 with small crystals
delivered by liquid/crystal injectors and for time-resolved measurements. In addition to achieving
microsecond time resolution, by breaking up the continuous x-ray beam into short pulses, the
chopper ensures crystals delivered by injectors are not destroyed by x-ray damage before they
are fully translated into the x-ray beam position, enabling exposure to unattenuated
monochromatic or pink-beam at BL12-1. In addition, this supplement requests a biocompatible
resin and ceramic 3D printer with 2-micron resolution that will allow for rapid prototyping and
optimization of sample injectors that will provide reliability and ease that will broaden the user
community. Finally, the proposal also requests a system to measure the conductivity of samples
in an automated manner which will allow to further the goals of the BTRR in characterizing sample
conditions and mapping those onto the ideal sample delivery method to be used for a given
sample, providing users with structured decision-making on how to best perform their experiment.
This will complement ongoing efforts in physicochemical characterization by adding conductivity,
an important parameter for electrokinetic sample delivery, to lookup tables to be published.
项目摘要 – 行政补充请求 – 1P41GM139687-02 – Sebastien
布泰(PI)。
该行政补充请求是由结构性组织的总体目标和目标驱动的
SLAC 国家加速器实验室的生物学动力学 BTRR BTRR 的目标是。
增强和开发 SLAC 直线加速器相干光源的独特功能
(LCLS)用于生物医学应用。所请求的补充将支持广泛的用户群。
并进一步实现 DBP 和 TR&D 的目标。
通过克服同步加速器辐射损伤的局限性,LCLS 特别适用于
对研究用高溶剂形成小晶体的大分子机器具有影响力
含量,使得它们脆弱、难以冷冻保存并且对辐射极其敏感。
例如,一项重大突破是应用 SFX 来检查本征晶体
在 GPCR 中生长的膜蛋白(例如 GPCR)是最大的靶标群体。
药物开发,用于治疗多种疾病(例如癌症、心血管疾病、
LCLS 在金属酶的研究中也有影响,这对金属酶的研究至关重要。
几乎所有的生物过程,因此代表了丰富的治疗目标空间
金属蛋白的高分辨率结构研究尤其具有挑战性。
同步加速器,因为金属中心,特别是那些具有氧化还原活性的金属中心,非常
此外,容易受到 X 射线诱导的光还原作用,产生超快 (~40 fs) X 射线脉冲。
LCLS 为直接观察涉及的动态过程开辟了新的可能性
此外,许多 P41 衍生的发展使得快速发展成为可能。
使用多个小晶体收集数据,适用于 LCLS 和同步加速器
通过扩展 LCLS 和 SSRL 同步加速器的能力来减轻辐射损伤
BTRR 为更多的大分子机器提供了结构表征,包括时间-
解决了广泛的生物医学相关时间尺度的研究。
BTRR 将提供支持和专业知识,以加强 SSRL 和 LCLS 的现有计划
以及对广大生物医学界的培训。
该行政补充将增强和扩展所提供的 BTRR 功能
普通用户和 P41 驱动生物医学项目 高速 X 射线的采集。
斩波器将满足 BTRR 高效使用 SSRL BL12-1 和小晶体的关键需求
除了实现之外,还可以通过液体/晶体注射器提供并进行时间分辨测量。
微秒时间分辨率,通过将连续的 X 射线束分解成短脉冲,
斩波器可确保注射器输送的晶体在被 X 射线损坏之前不会被破坏
完全转换为 X 射线束位置,从而能够在无人值守的情况下进行曝光
BL12-1 为单色或粉红色光束 此外,该补充剂需要生物相容性。
具有 2 微米分辨率的树脂和陶瓷 3D 打印机,可实现快速原型制作和
进样器的优化将提供可靠性和易用性,从而扩大用户范围
最后,该提案还要求建立一个测量样品电导率的系统。
以自动化方式进一步实现 BTRR 在表征样本方面的目标
条件并将其映射到用于给定的理想样品输送方法
示例,为用户提供有关如何最好地执行实验的结构化决策。
这将通过增加电导率来补充物理化学表征方面正在进行的努力,
动电样品输送的一个重要参数,用于查找要发布的表。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sebastien Boutet其他文献
Sebastien Boutet的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sebastien Boutet', 18)}}的其他基金
相似海外基金
Cranial electrotherapy stimulation: Piloting a road to PTSD prevention in first responders
颅脑电疗刺激:在急救人员中试行预防 PTSD 的道路
- 批准号:
10853457 - 财政年份:2023
- 资助金额:
$ 18.9万 - 项目类别:
Synthetic manipulation of engineered perivascular niches
工程化血管周围生态位的综合操纵
- 批准号:
10831221 - 财政年份:2023
- 资助金额:
$ 18.9万 - 项目类别:
Perivascular tissue models to overcome MGMT-mediated temozolomide resistance in glioblastoma
克服胶质母细胞瘤中 MGMT 介导的替莫唑胺耐药性的血管周围组织模型
- 批准号:
10818804 - 财政年份:2023
- 资助金额:
$ 18.9万 - 项目类别:
Is the gut important in multiple joint osteoarthritis? A multimodal investigation in humans and pet dogs
肠道在多关节骨关节炎中重要吗?
- 批准号:
10859955 - 财政年份:2023
- 资助金额:
$ 18.9万 - 项目类别: