Machine Learning for Analyzing State Dependent Neuronal Network Dynamics
用于分析状态相关神经网络动力学的机器学习
基本信息
- 批准号:10825302
- 负责人:
- 金额:$ 3.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:Academic TrainingAffectAnesthesia proceduresBehavioralBostonCalciumCellsCommunicationComplexComputational ScienceCoupledDataDevelopmentDimensionsEngineeringEnsureEquilibriumEtiologyEventFacultyFrequenciesGroupingHippocampusImageIndividualInterdisciplinary StudyIsofluraneMachine LearningMathematicsMemoryMentorshipMethodsModelingMusNeuronsNeurosciencesOpticsOutputPatternProblem SolvingResearchScientistSeriesSignal TransductionSomatosensory CortexStimulusStructureSystemTechnical ExpertiseTimeUniversitiesWorkawakecell typecollaborative environmentconditioned feardata reductiondiscountingexcitatory neuronexperimental studyfear memoryindividual responsememory encodingmemory recallmultidimensional dataneuralneural networkoptogeneticsresponsestatisticstwo-photon
项目摘要
Calcium imaging allows recording from 100s of neurons in a single wide field of view, giving rise
to extremely high dimensionality data. Current analysis standards employ descriptive statistics
that summarize neuronal responses into single quantitative metrics, discounting the temporal
dynamics of individual cells and local networks. In contrast, machine learning, especially
dimensionality reduction models, provide more nuanced analysis that considers the temporal
patterns and groupings among cells. While previous work has attempted to reduce the neuronal
activity to very low dimensional manifolds, these methods result in outputs that are difficult to
understand. In this work, we adapt Non-Negative Matrix Factorization (NMF), an easily
interpretable dimensionality reduction method to analyze shifts in neuronal network dynamics
that arise as a function of different experimental contexts. We will apply our framework to study
the neuronal network dynamics of two different contexts: 1) the primary somatosensory cortex
(S1) under increasing concentrations of anesthesia, and 2) the hippocampus during optogenetic
stimulation of memory-encoding ensembles of neurons. We have successfully adapted and
characterized a series of dimensionality reduction methods and have demonstrated NMF is a
superior method to extract underlying structure from calcium recordings. Initial analyses have
extracted ordered, low-dimensional, internal structure not detectable with traditional statistics.
This research will be conducted at Boston University, taking advantage of the numerous
multidisciplinary research centers (Center for Systems Neuroscience, Neurophotonics Center,
Rafik B. Hariri Institute for Computing and Computational Science & Engineering). These
institutes, consisting of highly diverse and renowned groups of faculty, create a highly
collaborative environment for interdisciplinary research, allowing scientists to pursue interesting
questions not directly in their expertise. Further, a combination of academic training,
development of technical skills, analytical problem solving, scientific communication,
professional development, and consistent mentorship will ensure the project has the highest
potential to succeed possible.
钙成像允许在单个宽视野中记录数百个神经元,从而产生
极高维数据。当前的分析标准采用描述性统计
将神经元反应总结为单个定量指标,忽略时间
单个细胞和局部网络的动态。相比之下,机器学习,尤其是
降维模型,提供更细致的分析,考虑时间
细胞之间的模式和分组。虽然之前的工作试图减少神经元
活动到非常低维流形,这些方法导致输出难以
理解。在这项工作中,我们采用了非负矩阵分解(NMF),一种简单的方法
可解释的降维方法来分析神经网络动力学的变化
作为不同实验背景的函数而出现。我们将应用我们的框架来研究
两种不同环境下的神经元网络动力学:1)初级体感皮层
(S1) 在麻醉浓度增加的情况下,2) 光遗传学过程中的海马
刺激记忆编码神经元群。我们已经成功适应并
表征了一系列降维方法,并证明了 NMF 是一种
从钙记录中提取基础结构的优越方法。初步分析有
提取有序、低维、传统统计无法检测的内部结构。
这项研究将在波士顿大学进行,利用大量的
多学科研究中心(系统神经科学中心、神经光子学中心、
Rafik B. Hariri 计算和计算科学与工程研究所)。这些
研究所由高度多样化和知名的教师群体组成,创建了一个高度
跨学科研究的协作环境,让科学家能够追求有趣的
问题不直接涉及他们的专业知识。此外,结合学术培训,
发展技术技能、分析问题解决、科学交流、
专业发展和持续的指导将确保该项目具有最高的
成功的潜力成为可能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel David Carbonero其他文献
Daniel David Carbonero的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Bag-Mask Ventilation to PreVent Hypoxemia during Tracheal Intubation in the Emergency Department: A Clinical Trial
急诊科气管插管期间使用面罩通气预防低氧血症:临床试验
- 批准号:
10226254 - 财政年份:2020
- 资助金额:
$ 3.98万 - 项目类别:
Bag-Mask Ventilation to PreVent Hypoxemia during Tracheal Intubation in the Emergency Department: A Clinical Trial
急诊科气管插管期间使用面罩通气预防低氧血症:临床试验
- 批准号:
10455640 - 财政年份:2020
- 资助金额:
$ 3.98万 - 项目类别:
Bag-Mask Ventilation to PreVent Hypoxemia during Tracheal Intubation in the Emergency Department: A Clinical Trial
急诊科气管插管期间使用面罩通气预防低氧血症:临床试验
- 批准号:
10038068 - 财政年份:2020
- 资助金额:
$ 3.98万 - 项目类别:
Short Course: Integrative and Organ Systems Pharmacology
短期课程:综合和器官系统药理学
- 批准号:
7232109 - 财政年份:2005
- 资助金额:
$ 3.98万 - 项目类别: