A metabolomics-based laboratory developed test to improve the diagnostic precision of Polycystic Ovary Syndrome
基于代谢组学的实验室开发了测试以提高多囊卵巢综合症的诊断精度
基本信息
- 批准号:10820801
- 负责人:
- 金额:$ 29.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-18 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:BiochemicalBiologicalBiological MarkersBiologyCategoriesClassificationClinicalClinical DataClinical TrialsCollaborationsCollectionComplexDataDevelopmentDiagnosisDiagnosticDiagnostic ImagingDiagnostic testsDiseaseEndocrine System DiseasesEnvironmentFollow-Up StudiesGenomeGoalsGuidelinesHealth StatusHeterogeneityHigh Pressure Liquid ChromatographyHyperandrogenismIndividualLabelLaboratoriesMass Spectrum AnalysisMeasuresMetabolicMetabolismOutcomePatient-Focused OutcomesPatientsPhasePhenotypePolycystic Ovary SyndromePositioning AttributePrecision therapeuticsSamplingSerumSmall Business Innovation Research GrantStatistical Data InterpretationSymptomsTechniquesTestingTimebiomarker signaturechronic anovulationclinical decision-makingclinically relevantcohortdiagnostic criteriaevidence basefollow-upimprovedinsightlifestyle factorsmedical schoolsmetabolic profilemetabolomemetabolomicsnovelpatient stratificationpersonalized diagnosticsphenotypic biomarkerrandom forestscreeningsmall moleculesuccesstandem mass spectrometrytool
项目摘要
Abstract
Polycystic ovary syndrome (PCOS) is a complex, multifactorial endocrine disorder characterized by
hyperandrogenism, chronic anovulation, and polycystic ovaries. It is currently diagnosed by the Rotterdam
criteria, which categorizes the presentation of these basic symptomologies into four main phenotypes labeled A,
B, C, and D. While these phenotypes can define disease and inform clinical decision making in a broad sense,
our ability to select the best precision treatments and appropriate cohorts for clinical trials remains limited
because there is considerable heterogeneity within phenotypes and little data by which to define them with higher
precision. Defining PCOS phenotypes with higher precision to thereby improve patient outcomes starts by
incorporating additional, evidence-based diagnostic criteria into present day diagnostic guidelines.
In this Phase I SBIR, we will address the need for greater precision by testing the hypothesis that using
metabolomics data in conjunction with clinical symptoms can define PCOS phenotypes with higher precision
than clinical symptoms alone.
Metabolites are the small molecule intermediates and products of metabolism upon which the inputs from the
genome, the environment, and lifestyle factors converge. Given their unique position in the central dogma of
biology they are considered to be the closest reflection of an individual’s real-time health status. Metabolites
reflect disease activity through changes in their abundance, which can be quantified using ultra-high performance
liquid chromatography and tandem mass spectrometry (UHPLC-MS/MS). When used in an untargeted manner,
UPLC-MS/MS can measure the entire collection of metabolites in a given biological sample (the metabolome),
enabling broad screening of an individual’s biochemical profile to identify disease-causing metabolic
perturbations (metabolic signatures of disease). We and others have shown that metabolic signatures associated
with PCOS can provide deep phenotypic insight into disease activity. In collaboration with Dr. Richard Legro at
Penn State Medical School, Metabolon will leverage its proprietary UHPLC-MS/MS platform, NGPTM, to
interrogate metabolic signatures unique to PCOS phenotype A and phenotype B and utilize high level statistical
analyses to determine whether metabolic profiling can identify novel, clinically relevant sub-phenotypes and
thereby define phenotypes more precisely than clinical symptoms alone.
In success, the findings of this project will justify a follow-up study in which we develop a diagnostic test that
targets these phenotype-defining metabolic signatures. The ultimate outcome of a successful Phase I will be the
development of a tool that allows PCOS phenotypes to be defined more precisely than today’s diagnostic
guidelines, which represents a step towards improving clinical decision making, patient stratification in clinical
trials, and overall patient outcomes.
抽象的
多囊卵巢综合症(PCOS)是一种复杂的、多因素的内分泌疾病,其特征是
雄激素过多症、慢性无排卵和多囊卵巢目前由鹿特丹诊断。
标准,将这些基本症状的表现分类为四种主要表型,标记为 A,
B、C 和 D。虽然这些表型可以从广义上定义疾病并为临床决策提供信息,
我们为临床试验选择最佳精准治疗和适当队列的能力仍然有限
因为表型之间存在相当大的异质性,并且很少有数据可以用更高的标准来定义它们
更精确地定义 PCOS 表型,从而改善患者的治疗结果
将额外的基于证据的诊断标准纳入当今的诊断指南。
在第一阶段 SBIR 中,我们将通过测试以下假设来解决对更高精确度的需求:
代谢组学数据与临床症状相结合可以更精确地定义 PCOS 表型
比单纯的临床症状更重要。
代谢物是小分子中间体和代谢产物,来自代谢物的输入依赖于代谢产物。
基因组、环境和生活方式因素在中心法则中具有独特的地位。
生物学上它们被认为是最接近个人实时健康状况的反映。
通过丰度的变化反映疾病活动,可以使用超高性能进行量化
液相色谱和串联质谱 (UHPLC-MS/MS) 当以非目标方式使用时,
UPLC-MS/MS 可以测量给定生物样品中代谢物的全部集合(代谢组),
能够广泛筛查个体的生化特征,以识别引起疾病的代谢
我们和其他人已经证明代谢特征相关。
与 PCOS 的研究可以提供对疾病活动的深入表型洞察。
宾夕法尼亚州立大学医学院的 Metabolon 将利用其专有的 UHPLC-MS/MS 平台 NGPTM
询问 PCOS 表型 A 和表型 B 特有的代谢特征,并利用高水平统计数据
分析以确定代谢谱是否可以识别新的、临床相关的亚表型和
从而比单独的临床症状更准确地定义表型。
如果成功的话,该项目的结果将证明后续研究的合理性,在该研究中我们开发了一种诊断测试,
针对这些表型定义的代谢特征,第一阶段成功的最终结果将是
开发一种工具,可以比当今的诊断更精确地定义 PCOS 表型
指南,这代表着朝着改善临床决策、临床患者分层迈出的一步
试验和总体患者结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam David Kennedy其他文献
Adam David Kennedy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam David Kennedy', 18)}}的其他基金
A Novel Workflow to Screen for Illicit Drug Exposure in Newborns
筛查新生儿非法药物暴露的新工作流程
- 批准号:
9912559 - 财政年份:2019
- 资助金额:
$ 29.77万 - 项目类别:
相似国自然基金
膝关节软骨退变多模态磁共振成像与软骨及滑膜相关生物标记物表达关系的实验研究
- 批准号:82360339
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
一种用于生物呼吸标记物检测的中红外全固态超短脉冲激光器的研究
- 批准号:62305188
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脑出血后迟发性认知功能减退的机制探索和生物标记物研发
- 批准号:82371302
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
纳米孔光电检测泪液双重生物标记物及其在糖尿病视网膜病变无创诊断中的应用研究
- 批准号:22304134
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多种高分子量呼吸生物标记物的复合光谱表征与解析机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Assessing the real-world impact of a low nicotine product standard for smoked tobacco in New Zealand
评估新西兰低尼古丁产品标准对吸食烟草的现实影响
- 批准号:
10665851 - 财政年份:2023
- 资助金额:
$ 29.77万 - 项目类别:
Mechanistic characterization of vaginal microbiome-metabolome associations and metabolite-mediated host inflammation
阴道微生物组-代谢组关联和代谢物介导的宿主炎症的机制特征
- 批准号:
10663410 - 财政年份:2023
- 资助金额:
$ 29.77万 - 项目类别:
In vivo 2-photon imaging of retinal biochemistry before and after retinal organoid transplantation
视网膜类器官移植前后视网膜生物化学的体内2光子成像
- 批准号:
10643273 - 财政年份:2023
- 资助金额:
$ 29.77万 - 项目类别:
Structurally engineered furan fatty acids for the treatment of dyslipidemia and cardiovascular disease
结构工程呋喃脂肪酸用于治疗血脂异常和心血管疾病
- 批准号:
10603408 - 财政年份:2023
- 资助金额:
$ 29.77万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 29.77万 - 项目类别: