Calcium modification of voltage gated sodium channels
电压门控钠通道的钙修饰
基本信息
- 批准号:10798965
- 负责人:
- 金额:$ 21.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAddressAffinityBindingBinding ProteinsBinding SitesCalciumCalmodulinCellsCentral Nervous SystemComplexConflict (Psychology)CustomDataData AnalysesDiseaseElectrophysiology (science)GenesGoalsImpairmentIndividualInvestigationIon ChannelIon Channel GatingKineticsKnowledgeLifeLiteratureMeasuresModelingModificationMolecular ConformationMutationMyocardiumPaperPhysiologicalPoint MutationProcessProtein IsoformsProteinsRecoveryRegulationReportingResearch PersonnelRoleSkeletal MuscleSmooth MuscleSodiumSodium ChannelStructureTestingTimeWorkdesignnovelnovel strategiesoutcome disparitiessmall moleculestructural biologytreatment strategyvoltage
项目摘要
PROJECT SUMMARY
Voltage-gated ion channels are essential for action potentials in excitable cells located throughout the body
(central nervous system, smooth muscle, heart and skeletal muscle). Loss of, improper, or untimely function,
can each cause or contribute to disease. Many individual point mutations in the genes of ion channel or
accessory proteins have been associated with disease, some of which can be life threatening. Many disease-
associated mutations are at or near accessory protein binding sites. Therefore, significant effort has been put
forth by many investigators to characterize mechanisms of ion channel gating modification.
It is well established that Ca2+ can alter ion channel function, and the Ca2+ sensing protein calmodulin
(CaM) has a prominent role in these processes. Structural investigations have identified many distinct CaM-ion
channel interactions; however, the posited physiological function and interpretation of this data is often
controversial. Early studies relied on measuring ion channel function in the absence or presence of Ca2+ and
this has generated seemingly disparate results. Subsequent investigation revealed the mechanism(s) of Ca2+-
driven modification are complex and can involve multiple accessory proteins.
I previously identified a high-affinity interaction between CaM and part of a voltage-gated sodium
channel that is directly responsible for inactivating conduction. I leveraged my in-depth structural
characterization to impair the CaM interaction without conferring additional modification to channel function.
This is a notable accomplishment given this part of the channel undergoes rapid conformational change during
each functional cycle. Because of this, I could for the first time clearly attribute modified sodium channel
function to reduced CaM binding. My data demonstrate that sodium channels with this reduced CaM
interaction require longer to recover from the inactivated state.
Considering my structure/function findings with literature suggests a paradigm of CaM Facilitated
Recovery from Inactivation (CFRI). As demonstrated in my papers and scientific data, CaM engages the
inactivation gate of several sodium channel isoforms with high affinity, suggesting a unique model of
regulation. My findings are in direct conflict with other reports that posit models of CaM Dependent Inactivation
(CDI) and [Ca2+] insensitivity. These opposing models arise from knowledge gaps regarding (i) the kinetic rates
of CaM interactions and (ii) the precise role of each CaM interaction in an excitable cell that contains oscillating
[Ca2+]. My proposal addresses these knowledge gaps by uniquely combining structural biology, stopped-flow
kinetics, and electrophysiology to dissect the roles of the CaM-ion channel interactions in excitable cells.
Importantly, we then leverage this knowledge to design custom small molecules (SAR by NMR approach) that
alter the kinetics of accessory protein interactions, with a goal of tuning channel gating. This work will test
models of Ca2+ modification of ion channel function, and explore novel strategies for treating channelopathies.
项目摘要
电压门控离子通道对于位于整个体内的可激发细胞的动作电位至关重要
(中枢神经系统,平滑肌,心脏和骨骼肌)。丧失,不适当或不合时宜的功能,
每个人都会导致或导致疾病。离子通道基因中的许多个体点突变或
附件蛋白与疾病有关,其中一些可能会威胁生命。许多疾病 -
相关的突变在附属蛋白结合位点处或附近。因此,已经付出了巨大的努力
许多研究人员的提示是表征离子通道门控修饰的机制。
众所周知,Ca2+可以改变离子通道功能,而Ca2+传感蛋白钙调蛋白
(CAM)在这些过程中起着重要的作用。结构调查已经确定了许多不同的凸轮
通道相互作用;但是,所提出的生理功能和该数据的解释通常是
有争议的。早期研究依赖于在不存在或存在Ca2+和存在的情况下测量离子通道功能
这产生了看似不同的结果。随后的研究揭示了Ca2+ - 的机制
驱动的修饰很复杂,可能涉及多种附件蛋白。
我先前鉴定出CAM和部分电压门口的一部分之间的高亲和力相互作用
直接导致失活传导的通道。我利用了我的深入结构
表征可损害CAM相互作用,而无需赋予通道函数的其他修改。
鉴于该渠道的这一部分经历了快速的构象变化,这是一个显着的成就
每个功能周期。因此,我第一次可以清楚地归因于修改的钠通道
功能减少CAM结合。我的数据表明,这种减少CAM的钠通道
相互作用需要更长的时间才能从灭活状态中恢复。
考虑到我的结构/功能发现,文献表明了凸轮的范式
从灭活中恢复(CFRI)。正如我的论文和科学数据所证明的那样,CAM与
具有高亲和力的几个钠通道同工型的灭活门,表明了独特的模型
规定。我的发现与其他报告直接冲突,这些报告认为CAM依赖性失活的模型
(CDI)和[Ca2+]不敏感。这些相反的模型来自有关(i)动力学率的知识差距
CAM相互作用和(ii)每个CAM相互作用在包含振荡的单元中的精确作用
[Ca2+]。我的建议通过唯一结合结构生物学,停止流量来解决这些知识差距
动力学和电生理学,以剖析可激发细胞中Cam-ion通道相互作用的作用。
重要的是,我们利用这些知识来设计自定义的小分子(NMR方法的SAR)
改变辅助蛋白相互作用的动力学,以调整通道门控的目标。这项工作将测试
CA2+修饰离子通道功能的模型,并探索治疗通道病的新型策略。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Review of Calcineurin Biophysics with Implications for Cardiac Physiology.
- DOI:10.3390/ijms222111565
- 发表时间:2021-10-26
- 期刊:
- 影响因子:5.6
- 作者:Williams RB;Johnson CN
- 通讯作者:Johnson CN
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher N. Johnson其他文献
A novel and highly regioselective Cr-mediated route to functionalised quinone boronic ester derivatives
一种新颖且高度区域选择性的 Cr 介导的功能化醌硼酸酯衍生物路线
- DOI:
10.1039/a906643h - 发表时间:
1999 - 期刊:
- 影响因子:4.9
- 作者:
M. W. Davies;J. Harrity;Christopher N. Johnson - 通讯作者:
Christopher N. Johnson
Australia's Mammal Extinctions: A 50,000-Year History
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Christopher N. Johnson - 通讯作者:
Christopher N. Johnson
A review of trap-neuter-return ( TNR ) for the management of unowned cats
对无主猫管理的诱捕-绝育-放回(TNR)的回顾
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Hugh W. McGregor;S. Legge;Menna E. Jones;Christopher N. Johnson - 通讯作者:
Christopher N. Johnson
Studies on a series of potent, orally bioavailable, 5-HT(1) receptor ligands.
对一系列有效的、口服生物可利用的 5-HT(1) 受体配体的研究。
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:2.7
- 作者:
S. Ward;Christopher N. Johnson;P. Lovell;C. Scott;Paul W Smith;G. Stemp;K. Thewlis;A. Vong;J. Watson - 通讯作者:
J. Watson
Factors affecting success of conservation translocations of terrestrial vertebrates: A global systematic review
影响陆生脊椎动物保护易位成功的因素:全球系统评价
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:4
- 作者:
S. D. Morris;B. Brook;K. Moseby;Christopher N. Johnson - 通讯作者:
Christopher N. Johnson
Christopher N. Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher N. Johnson', 18)}}的其他基金
Calcium modification of voltage gated sodium channels
电压门控钠通道的钙修饰
- 批准号:
10275837 - 财政年份:2021
- 资助金额:
$ 21.6万 - 项目类别:
Calcium modification of voltage gated sodium channels
电压门控钠通道的钙修饰
- 批准号:
10447183 - 财政年份:2021
- 资助金额:
$ 21.6万 - 项目类别:
Calcium modification of voltage gated sodium channels
电压门控钠通道的钙修饰
- 批准号:
10620784 - 财政年份:2021
- 资助金额:
$ 21.6万 - 项目类别:
Structural / functional basis of CaM dependent modulation of NaV1.5 inactivation
NaV1.5 失活的 CaM 依赖性调节的结构/功能基础
- 批准号:
8456784 - 财政年份:2014
- 资助金额:
$ 21.6万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating the interactions of auxillary subunits with the Nav1.5 channel
研究辅助亚基与 Nav1.5 通道的相互作用
- 批准号:
10678156 - 财政年份:2023
- 资助金额:
$ 21.6万 - 项目类别:
Vagal airway sensory nerve activation by beta-coronavirus spike protein
β-冠状病毒刺突蛋白激活迷走神经气道感觉神经
- 批准号:
10748485 - 财政年份:2023
- 资助金额:
$ 21.6万 - 项目类别:
Regulation of the Neuronal Transcriptome and Translatome by Myelination
髓鞘形成对神经元转录组和翻译组的调节
- 批准号:
10707902 - 财政年份:2022
- 资助金额:
$ 21.6万 - 项目类别:
Calcium modification of voltage gated sodium channels
电压门控钠通道的钙修饰
- 批准号:
10275837 - 财政年份:2021
- 资助金额:
$ 21.6万 - 项目类别:
Calcium modification of voltage gated sodium channels
电压门控钠通道的钙修饰
- 批准号:
10447183 - 财政年份:2021
- 资助金额:
$ 21.6万 - 项目类别: