Computational approaches to characterize heterogeneity and improve risk stratification in complex disease phenotypes
表征复杂疾病表型异质性并改善风险分层的计算方法
基本信息
- 批准号:10805689
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-12 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAffectAlgorithmsAreaAsthmaBiologicalClinicClinicalColoradoComplexComputing MethodologiesDatabasesDetectionDimensionsDiseaseDisparityDrug TargetingEnvironmentEnvironmental ExposureEnvironmental Risk FactorEtiologyFDA approvedGene CombinationsGene Expression ProfileGenerationsGenesGeneticGenetic HeterogeneityGenetic TranscriptionGenetic studyGenomeGoalsGroupingHeritabilityHeterogeneityHumanIndividualLearningLinkMapsMedical ResearchMedicineMentorsMentorshipMethodologyMethodsModalityModelingMolecularMultiomic DataNatureOntologyOutcomePathway interactionsPatternPennsylvaniaPerformancePeripheralPharmaceutical PreparationsPharmacologyPhasePhenotypePlayPopulationPrecision Medicine InitiativeProbabilityPrognosisPropertyReduce health disparitiesRegulationResearchResearch PersonnelResourcesRoleSystems BiologyTechnologyTestingTherapeuticTissuesTrainingTranscription ProcessTranslatingUniversitiesValidationVariantWorkbiobankcareercell typeclinical carecommon treatmentdesigndisease diagnosisdisease phenotypedisorder riskdrug candidatedrug discoveryeffective therapyflexibilitygenetic risk factorgenetic variantgenome wide association studyhigh riskhuman diseaseimprovedindividualized medicinelatent gene expressionmachine learning methodmedical schoolsmethod developmentpersonalized medicinepleiotropismpolygenic risk scoreportabilityprecision medicineprofiles in patientsrecruitrisk predictionrisk stratificationtraittranscriptometranslational medicine
项目摘要
PROJECT SUMMARY/ABSTRACT
Recent technological breakthroughs have enabled the generation of clinical, environmental, and multi-omics data
at an unprecedented scale, providing a complete profile of the patient for individualized disease diagnosis, prog-
nosis, and treatment. However, the precision medicine approach is yet to realize its potential in most multi-factorial
diseases, for which their highly polygenic nature, as well as phenotypic and genetic heterogeneity, complicate the
identification of disease-associated cell type-specific transcriptional mechanisms. A better characterization of this
heterogeneity and an interpretable prediction of individuals at high risk of disease are crucial steps to deliver the
promises of precision medicine. In this context, polygenic risk scores (PRS) are likely to play a crucial role in
precision medicine for disease-risk prediction. However, it has been argued that PRS might accentuate dispari-
ties among non-European ancestries and have low stability at individual-level predictions, probably due to greater
underlying complexity in disease etiology that is not captured in a single score. Current efforts to mitigate health
disparities involve recruiting individuals from different population ancestries. However, if the underlying biological
complexity of disease etiology remains unaccounted, risk stratification methods will continue to be limited.
The goal of this project is to develop machine learning methods to advance key computational aspects of precision
medicine. In the first aim, an unsupervised method will be applied across large amounts of genetic studies to
detect gene sets associated with multiple human traits, which will also identify environmental risk factors. In the
second aim, new computational approaches will be developed to learn gene co-expression patterns optimized for
a better understanding of transcriptional mechanisms linked to complex traits and their therapeutical modalities.
This will detect gene modules (i.e., genes with similar expression profiles across the same cell types) with complex
gene relationships, and the approach will be validated by predicting known FDA-approved drug-disease links.
Finally, the outcomes of these aims will inform a gene module-based polygenic risk score for accurate and robust
disease-risk stratification that will be portable across different population ancestries. Although the methods will
be initially applied to asthma, they are clearly extendable to other common diseases as well.
For the K99 phase of this project, the mentorship team's expertise covers all key areas of precision medicine,
including computational genetics, systems biology, environmental exposure studies, pharmacology, and trans-
lational medicine. Mentors and advisors are directly involved in precision medicine initiatives to enhance both
scientific discovery and its implementation in clinical care. For the R00 phase and beyond, all the conceptual
and methodological expertise previously learned will prepare the applicant for an independent research career
in computational methods development applied to precision medicine. The Perelman School of Medicine at the
University of Pennsylvania, consistently ranked among the top research medical schools, represents the ideal
environment for this highly collaborative project.
项目摘要/摘要
最近的技术突破使临床,环境和多摩变数据能够产生
以前所未有的规模,为患者提供了个性化疾病诊断,进展
NOSIS和治疗。但是,精确的医学方法仍然是在大多数多工件中实现其潜力
其高度多基因性质以及表型和遗传异质性的疾病使该疾病变得复杂
鉴定与疾病相关的细胞类型特异性转录机制。更好地表征
异质性和对处于高疾病风险的个体的可解释性预测是交付的关键步骤
精确医学的承诺。在这种情况下,多基因风险评分(PRS)可能在
疾病风险预测的精密医学。但是,有人认为PR可能会突出不同
非欧洲祖先之间的关系,在个人级别的预测方面的稳定性较低,可能是由于更大的
疾病病因的基本复杂性,并未以单个分数捕获。目前为缓解健康的努力
差异涉及招募来自不同人口祖先的个人。但是,如果基本的生物学
疾病病因的复杂性仍然没有被指责,风险地层方法将继续受到限制。
该项目的目的是开发机器学习方法,以提高精确的关键计算方面
药品。在第一个目标中,将在大量遗传研究中应用一种无监督的方法
检测与多个人类特征相关的基因集,这也将确定环境风险因素。在
第二个目的,将开发新的计算方法来学习针对优化的基因共表达模式
更好地理解与复杂性状及其治疗方式相关的转录机制。
这将检测具有复杂的基因模块(即具有相同表达蛋白的基因)
基因关系,该方法将通过预测已知的FDA批准的药物疾病链接来验证。
最后,这些目标的结果将为基于基因模块的多基因风险评分提供信息
疾病风险的地层将在不同的人口祖先范围内移植。尽管这些方法将
最初是将其应用于哮喘,显然也可以扩展到其他常见疾病。
对于该项目的K99阶段,Mentalship团队的专业知识涵盖了精密医学的所有关键领域,
包括计算遗传学,系统生物学,环境暴露研究,药理学和反式
理性医学。导师和顾问直接参与精确医学计划,以增强两者
科学发现及其在临床护理中的实施。对于R00阶段及以后的所有概念
和以前学到的方法论专业知识将为申请人做好准备的独立研究职业
在计算方法开发中应用于精密医学。佩雷尔曼医学院
宾夕法尼亚大学始终被排名最高的研究医学院,代表了理想
这个高度协作项目的环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Milton Pividori其他文献
Milton Pividori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Milton Pividori', 18)}}的其他基金
Computational approaches to characterize heterogeneity and improve risk stratification in complex disease phenotypes
表征复杂疾病表型异质性并改善风险分层的计算方法
- 批准号:
10448966 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
社交网络上观点动力学的重要影响因素与高效算法
- 批准号:62372112
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Exploratory Analysis Tools for Developmental Studies of Brain Microstructure with Diffusion MRI
利用扩散 MRI 进行脑微结构发育研究的探索性分析工具
- 批准号:
10645844 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Mechanisms by which PIM kinase modulates the effector function of autoreactive CD8 T cells in type 1 diabetes
PIM 激酶调节 1 型糖尿病自身反应性 CD8 T 细胞效应功能的机制
- 批准号:
10605431 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
GPU-based SPECT Reconstruction Using Reverse Monte Carlo Simulations
使用反向蒙特卡罗模拟进行基于 GPU 的 SPECT 重建
- 批准号:
10740079 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Extending Reach, Accuracy, and Therapeutic Capabilities: A Soft Robot for Peripheral Early-Stage Lung Cancer
扩大范围、准确性和治疗能力:用于周围早期肺癌的软机器人
- 批准号:
10637462 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: