A pathophysiology driven spatial dynamic modeling framework for personalized prediction and precision medicine
用于个性化预测和精准医疗的病理生理学驱动的空间动态建模框架
基本信息
- 批准号:10797133
- 负责人:
- 金额:$ 12.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-08 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAlzheimer&aposs DiseaseAreaBiologicalBiological MarkersCalibrationCardiovascular DiseasesClinicalClinical DataClinical MedicineClinical TrialsComplexComputer ModelsComputing MethodologiesDataData AnalysesData AnalyticsData SetDeath RateDiffusionDiseaseDisease ProgressionElementsEpidemiologyEquationFunctional disorderGeneticGoalsHealthcareImageIndividualLibrariesLiteratureMagnetic Resonance ImagingMeasurementMedicineMethodsModelingModernizationOutputPatientsPhysiologicalProductionResearchResearch Project GrantsScienceSignal PathwaySignal TransductionSpeedSuggestionTechniquesTechnologyTestingTimeTissuesVisionanalytical toolchronic pancreatitisclinical biomarkerscomplex datacomputational platformcytokinedisorder riskimaging biomarkerimprovedindividual patientinnovationmathematical modelmechanical propertiesnovel therapeutic interventionoptimal treatmentspersonalized approachpersonalized health carepersonalized medicinepersonalized predictionsprecision medicineprocess optimizationsimulationtreatment planningusabilityvirtual
项目摘要
Summary
Predictive personalized healthcare and precision medicine enable a new era of medicine, in which traditional
physiological information and new clinical data including genetic data, imaging data, and healthcare data come
together to match the right patient with the right treatment at the right time. With healthcare and clinical
technology rapidly grow, the vast and varied amounts of clinical data become widely accessible and usable.
However, current modeling techniques lack of combining pathophysiology with imaging data. Therefore,
developing an innovative data analytical tool that combines personalized clinical data with the existing sciences
of epidemiology and clinical medicine becomes an urgent need in this new area. The overall vision of this
research project is to develop a pathophysiology driven spatial dynamic modeling (PDSDM) approach for
personalized healthcare prediction and precision medicine. Our five-year goals are to develop the PDSDM
computational modeling platform and validate this platform on patient data for various diseases. In specific, we
will develop an interactive computational platform to build the PDSDM model and develop a computational
module to simulate the model automatically. Then we will develop a model calibration module by employing
the clinical patient data to parameterize mathematical models arising from physiological signaling pathway
networks and will also incorporate the imaging data as the spatial computational domain; moreover, optimal
personalized treatment studies will be performed on this computational modeling platform for current available
clinical trials. This innovative framework will integrate mathematical modeling, computational methods, data
analysis, and data-driven optimization techniques to provide a personalized spatial computational model for
each individual. We will validate this new framework on various biomedical diseases such as cardiovascular
disease, chronic pancreatitis, and Alzheimer’s disease with existing clinical and biological data. The proposed
research is significant because it will provide the 3D prediction for personalized disease progression which
would evaluate personalized disease risk more accurately. It will also provide a systematic way to assess the
available treatment plans virtually then to provide an optimal treatment suggestion for each individual.
概括
预测性个性化医疗保健和精准医疗开启了医学的新时代,其中传统的
生理信息和新的临床数据,包括遗传数据、影像数据和医疗保健数据来了
共同在正确的时间为正确的患者提供正确的治疗,并提供医疗保健和临床服务。
技术迅速发展,大量不同的临床数据变得可以广泛访问和使用。
然而,当前的建模技术缺乏将病理生理学与成像数据相结合。
开发一种创新的数据分析工具,将个性化临床数据与现有科学相结合
流行病学和临床医学成为这一新领域的迫切需求。
研究项目是开发一种病理生理学驱动的空间动态建模(PDSDM)方法
我们的五年目标是开发 PDSDM。
计算建模平台并根据各种疾病的患者数据验证该平台。
将开发一个交互式计算平台来构建PDSDM模型并开发一个计算
然后我们将利用该模块来自动模拟模型。
临床患者数据参数化生理信号通路产生的数学模型
网络,并将成像数据纳入空间计算域;此外,
将在该计算建模平台上针对当前可用的治疗进行个性化治疗研究
这一创新框架将整合数学模型、计算方法和数据。
分析和数据驱动的优化技术,为
我们将针对心血管等各种生物医学疾病验证这一新框架。
疾病、慢性胰腺炎和阿尔茨海默病的现有临床和生物学数据。
这项研究意义重大,因为它将提供个性化疾病进展的 3D 预测,
它将更准确地评估个性化疾病风险。
可用的治疗计划几乎可以为每个人提供最佳的治疗建议。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WENRUI HAO其他文献
WENRUI HAO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WENRUI HAO', 18)}}的其他基金
A pathophysiology driven spatial dynamic modeling framework for personalized prediction and precision medicine
用于个性化预测和精准医疗的病理生理学驱动的空间动态建模框架
- 批准号:
10697363 - 财政年份:2022
- 资助金额:
$ 12.48万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
靶向干预CD33/Aβ相互作用改善小胶质细胞功能延缓AD病理进程
- 批准号:81901072
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 12.48万 - 项目类别:
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
- 批准号:
10555899 - 财政年份:2023
- 资助金额:
$ 12.48万 - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 12.48万 - 项目类别:
Comparison of direct and indirect magnetic resonance imaging of myelin in Alzheimer's disease
阿尔茨海默病髓磷脂直接和间接磁共振成像的比较
- 批准号:
10680319 - 财政年份:2023
- 资助金额:
$ 12.48万 - 项目类别: