Collaborative Research: DMS/NIGMS 2: New statistical methods, theory, and software for microbiome data
合作研究:DMS/NIGMS 2:微生物组数据的新统计方法、理论和软件
基本信息
- 批准号:10797410
- 负责人:
- 金额:$ 29.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-05 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:16S ribosomal RNA sequencingAsthmaBiologicalClinicalCommunitiesComplexComputer softwareDataDependenceDiabetes MellitusDiagnosticDiseaseFoundationsGenesGrowthHealthHigh-Throughput Nucleotide SequencingHumanInfantInterventionLearningMapsMediationMetagenomicsMethodologyMolecular EpidemiologyNational Institute of General Medical SciencesNatureObesityOutcomePatternPhylogenetic AnalysisPlayPreventionResearchResearch PersonnelRoleSample SizeShotgun SequencingStatistical MethodsStructureSurveysTechnologyTherapeuticanalytical toolautism spectrum disorderbiomarker discoverycancer biomarkerscombatcomputerized toolsdata structuredesigndisease diagnosisgenome wide association studyhigh dimensionalityimprovedinsightinterestmetabolomicsmicrobialmicrobial communitymicrobiomemicrobiome analysismicrobiome researchprognosticskin disordersoftware developmenttheories
项目摘要
Advancement in high-throughput sequencing technology allows the characterization of the microbiome via
either marker-gene (e.g., 16S rRNA gene) amplicon sequencing or metagenomics shotgun sequencing.
Consequently, the scientific community is increasingly appreciative of the important role that the
microbiome community plays in many human health and disease conditions. Despite its popularity, the
field of microbiome and metagenomics studies, however, has not yet reached the maturity attained in
other established molecular epidemiology fields, such as cancer biomarker discovery and genome-wide
association studies for making the leap from omics survey to rational microbiome-based therapeutics.
One of the primary limitations to leveraging this large body of microbiome and metagenomics data is
computational and statistical challenges. Among these is the technical nature of the data, including high
dimensionality, sparse count or compositional data structure, relatively small sample size, and complex
dependence/correlation structure such as phylogenetic relatedness. To combat these challenges, this
proposal seeks to develop statistical methods, theory, and computational tools to accurately characterize
microbial communities within and across large studies while maintaining both statistical rigor and
biological relevance. This project develops new statistical methods, theory, and software to characterize
microbial communities within and across large studies accurately. Specifically, motivated by biomedical
and biological problems encountered in microbiome studies of skin diseases, autism spectrum disorder,
and infant growth, the investigators will develop statistical methodology for (1) mapping microbial taxa that
influence clinical outcomes of interest in a powerful and robust pattern; (2) learning the correlation
structure among microbial taxa to decode the complex networks and interactions among the microbiome
community; (3) a new mediation analysis for microbiome studies with high-dimensional microbial profiles
and other omics profiles such as metabolomics. Successful completion of this proposal will fill the gap
between the burgeoning research interests in microbiome studies and the need for more analytical tools.
This proposal will improve the understanding of the underlying microbiome mechanism of many health
and disease conditions, which is critical to designing microbiome-based interventions for prognostic,
diagnostic, and treatment purposes.
高通量测序技术的进步允许通过以下方式表征微生物组
标记基因(例如 16S rRNA 基因)扩增子测序或宏基因组鸟枪测序。
因此,科学界越来越认识到科学技术的重要作用。
微生物群落在许多人类健康和疾病状况中发挥着作用。尽管它很受欢迎,
然而,微生物组和宏基因组学研究领域尚未达到成熟度
其他已建立的分子流行病学领域,例如癌症生物标志物发现和全基因组
关联研究,实现从组学调查到基于微生物组的合理治疗的飞跃。
利用大量微生物组和宏基因组数据的主要限制之一是
计算和统计挑战。其中包括数据的技术性质,包括高
维数、稀疏计数或组合数据结构、样本量相对较小且复杂
依赖性/相关结构,例如系统发育相关性。为了应对这些挑战,这
该提案旨在开发统计方法、理论和计算工具来准确表征
大型研究内部和之间的微生物群落,同时保持统计严谨性和
生物学相关性。该项目开发新的统计方法、理论和软件来表征
准确地了解大型研究内部和之间的微生物群落。具体来说,受到生物医学的推动
以及皮肤病、自闭症谱系障碍等微生物组研究中遇到的生物学问题,
和婴儿生长,研究人员将开发统计方法用于(1)绘制微生物分类群,
以强大而稳健的模式影响感兴趣的临床结果; (2)学习相关性
微生物类群之间的结构,以解码微生物组之间的复杂网络和相互作用
社区; (3)高维微生物谱的微生物组研究的新中介分析
以及其他组学概况,例如代谢组学。该提案的成功完成将填补空白
对微生物组研究的新兴研究兴趣和对更多分析工具的需求之间的关系。
该提案将增进对许多健康的潜在微生物组机制的理解
和疾病状况,这对于设计基于微生物组的预后干预措施至关重要,
诊断和治疗目的。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonlinear sufficient dimension reduction for distribution-on-distribution regression.
- DOI:10.1016/j.jmva.2024.105302
- 发表时间:2022-07
- 期刊:
- 影响因子:1.6
- 作者:Q. Zhang;Bing Li;Lingzhou Xue
- 通讯作者:Q. Zhang;Bing Li;Lingzhou Xue
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lingzhou Xue其他文献
Lingzhou Xue的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
民族药鸭嘴花碱及其衍生物基于IL-36-IL-36R轴抑痰抗哮喘的物质基础及作用机制研究
- 批准号:82360842
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
气道真菌生物组通过CHI3L1促进老年性哮喘发生发展的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
益母草总生物碱抑制HIF-1α介导的MCs活化抗过敏性哮喘机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于BATF/IL-17A调控ILC2细胞迁移探究哮喘小鼠“肺病及肠”的生物学基础
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
基于多组学分析的多环芳烃孕期暴露对子代哮喘影响的生物标志筛选和识别研究
- 批准号:82073630
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Revealing the role of blood microbiome in childhood asthma
揭示血液微生物组在儿童哮喘中的作用
- 批准号:
10590805 - 财政年份:2023
- 资助金额:
$ 29.6万 - 项目类别:
Examination of gut-microbiome-brain interactions in a novel gene x environment model of neurodevelopmental disorders
在神经发育障碍的新型基因 x 环境模型中检查肠道-微生物组-大脑相互作用
- 批准号:
10730191 - 财政年份:2022
- 资助金额:
$ 29.6万 - 项目类别:
Examination of gut-microbiome-brain interactions in a novel gene x environment model of neurodevelopmental disorders
在神经发育障碍的新型基因 x 环境模型中检查肠道-微生物组-大脑相互作用
- 批准号:
10610587 - 财政年份:2022
- 资助金额:
$ 29.6万 - 项目类别:
LIMA: Lipid anti-Inflammatory Mediators in Asthma to reduce airway hyperresponsiveness in obese asthmatics
LIMA:哮喘中的脂质抗炎介质可减少肥胖哮喘患者的气道高反应性
- 批准号:
10369934 - 财政年份:2022
- 资助金额:
$ 29.6万 - 项目类别:
Global Network for Women's and Children's Health Research Data Coordinating Center
全球妇女和儿童健康网络研究数据协调中心
- 批准号:
10474098 - 财政年份:2021
- 资助金额:
$ 29.6万 - 项目类别: