Predictive Models for Opioid Use Disorder Using Genomic, Social, and Clinical Factors
使用基因组、社会和临床因素的阿片类药物使用障碍的预测模型
基本信息
- 批准号:10797165
- 负责人:
- 金额:$ 19.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAffectAgeBody mass indexChronicClassificationClinicalClinical DataCodeCommunitiesControl GroupsCopy Number PolymorphismDataData SetDatabasesDependenceDevelopmentDiagnosisEnrollmentEnsureEquityEthnic OriginExposure toFamilyFibromyalgiaFutureGenderGenetic MarkersGenomicsGeographyIndividualMachine LearningMedicalMetadataMethodsMinorityModelingOutcomeOutputPainPatientsPerformancePersonsPharmaceutical PreparationsPopulationPopulation HeterogeneityPopulations at RiskPostoperative PainPrevalenceProceduresPublic HealthRaceRecording of previous eventsResearchRiskSamplingSingle Nucleotide PolymorphismSocial EnvironmentSocioeconomic StatusSubstance Use DisorderTechniquesTranslationsUnderrepresented PopulationsUnited StatesVariantVisualizationaddictionchronic painchronic painful conditionclinical careclinical decision supportclinically relevantgenome sequencinggenome wide association studygenomic biomarkergenomic datagenomic profileshealth equalityhealth equityhigh riskillicit opioidimprovedinsightinterestmachine learning modelmachine learning predictionmultiple data typesneural networknovelnovel markeropioid abuseopioid epidemicopioid mortalityopioid therapyopioid useopioid use disorderoutcome predictionpainful neuropathypatient populationpatient stratificationpredictive modelingprescription opioidprescription pain relieverrisk prediction modelrisk stratificationsexsocialsocial factorstime usetoolvectorwhole genome
项目摘要
PROJECT SUMMARY / ABSTRACT
The opioid crisis is a major public health problem in the United States. Over the past two decades, opioid use
and abuse have increased dramatically, with over 5 million people in the United States using prescription
analgesics without medical need or prescription. This has resulted in a significant increase in opioid-related
deaths and addiction rates, with the crisis having a profound impact on individuals, families, and communities.
The proposal aims to develop machine learning-based predictive models for opioid use disorder (OUD)
leveraging genomic, social, and clinical factors. The project will utilize the diverse and equitable AllOfUs
database to identify novel genomic markers associated with OUD in patients with and without co-existing pain
conditions. A significant advantage of the AllOfUs database is the diversity of the patient population and clinical
samples – over 50% of the population is considered underrepresented. This will be achieved through genome-
wide association analysis to identify novel single nucleotide variants, copy number variants, and/or structural
variants. The project will also use machine learning techniques to develop predictive models that classify the risk
of OUD, integrating various data types such as clinical factors, social factors, and genomic data. The project
aims to identify key features that aid in the development of improved models for predicting the risk of OUD.
The first specific aim of the proposal is to identify associations between genomic profiles and OUD. The project
will focus on patients with or without co-existing pain conditions and identify novel genetic markers associated
with OUD in each of these unique patient populations.
The second specific aim is to develop predictive models using machine learning techniques to classify the risk
of OUD. The models will integrate social, clinical, and genomic data to provide clinicians with a tool to risk stratify
their patients.
The project aims to develop robust machine learning-based models predicting OUD and visualize the individual
features' impacts on model performance to provide understanding of which factors are most impactful to
predicting the outcome.
项目摘要 /摘要
阿片类药物危机在美国是一个主要的公共卫生问题。
虐待急剧增加,有超过500万的偷窥状态使用处方
无需医疗或处方的镇痛药导致阿片类药物相关相关相关相关相关的相关相关的镇痛药显着增加。
死亡和成瘾率,危机对个人,家庭和社区产生了深远的影响。
该提案旨在开发基于机器学习的阿片类药物使用障碍(OUD)的预测模型
利用基因组,社会和临床因素。
数据库以识别患有及共存疼痛患者的Oud Oud相关的新型基因组标记
条件。
样品 - 超过50%的人口被认为是不受欢迎的。
广泛的关联分析,以识别Novy Novy核苷酸变体,拷贝数变化和/或结构
该项目将愿意开发对风险进行分类的预测模型
OUD,整合了各种数据类型,例如临床因素,社会因素和基因组数据
旨在确定有助于开发改进模型以预测风险的关键特征。
该提案的第一个具体目的是确定基因组概况与OUD之间的关联
将专注于有或没有共同验证疼痛状况的患者,并确定被刺激的Novy Novy标记
在每个独特的患者人群中都有OUD。
第二个具体目的是使用机器学习技术开发预测模型以对风险进行分类
OUD的模型将整合社会,临床和基因组数据
他们的病人。
该项目旨在开发基于机器学习的强大模型,以预测OUD并可视化个人
功能对模型性能的影响,以了解哪些因素最重要的因素
预测结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rodney Allanigue Gabriel其他文献
Rodney Allanigue Gabriel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
年龄结构和空间分布对艾滋病的影响:建模、分析与控制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机噪声影响下具有年龄结构的布鲁氏菌病动力学行为与最优控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 19.75万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 19.75万 - 项目类别:
Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
- 批准号:
10465010 - 财政年份:2023
- 资助金额:
$ 19.75万 - 项目类别:
Safety and Tolerability of TASIS-Peanut (Targeted Allergen Specific Immunotherapy within the Skin) patch for the Treatment of Peanut Allergy
TASIS-花生(皮肤内靶向过敏原特异性免疫疗法)贴剂治疗花生过敏的安全性和耐受性
- 批准号:
10551184 - 财政年份:2023
- 资助金额:
$ 19.75万 - 项目类别:
Sustained eIF5A hypusination at the core of brain metabolic dysfunction in TDP-43 proteinopathies
持续的 eIF5A 抑制是 TDP-43 蛋白病脑代谢功能障碍的核心
- 批准号:
10557547 - 财政年份:2023
- 资助金额:
$ 19.75万 - 项目类别: