Likely responder analysis and tests of model misspecification in randomized controlled trials of treatments for Alcohol Use Disorder
酒精使用障碍治疗随机对照试验中的可能反应者分析和模型错误指定测试
基本信息
- 批准号:10705711
- 负责人:
- 金额:$ 73.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-16 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressCharacteristicsClinicalClinical TrialsCombined Modality TherapyDataData SetDevelopmentDiagnosticDiagnostic ProcedureDouble-Blind MethodEnrollmentFailureGoalsIndividualInfluentialsKnowledgeMachine LearningMatched GroupMental disordersMethodsModelingNational Institute on Alcohol Abuse and AlcoholismOutcomeOutcome MeasureParameter EstimationPatientsPerformancePlacebosProbabilityProcessPropertyPublic HealthPublishingRandomizedRandomized, Controlled TrialsReproducibilityResearchResearch Project GrantsSamplingSecondary toSiteSpecific qualifier valueSubgroupTestingWorkalcohol abuse therapyalcohol use disorderclinical trial analysisgabapentinimprovedmachine learning modelmemberneural networknovelnovel strategiespatient subsetspersonalized medicineprecision medicinepredicting responsepredictive modelingprimary outcomeprognosticprognostic modelrandom forestrandomized, clinical trialsresponsesecondary analysissemiparametricsimulationstatistical and machine learningtreatment choicetreatment comparisontreatment effect
项目摘要
Project Summary/ Abstract
We have developed a strategy for the analysis of randomized clinical trials (RCTs) using a potential outcomes
causal framework. Likely responders (LRs) to a test treatment T are identified at the end of the trial and a
statistical test of the difference between T and placebo, P in this enriched sample is performed. LRs are identified
at the end of the trial by fitting a model, called a prognostic score function, that estimates the expected response
to T as a function of baseline features. The LR subset comprises individuals whose expected response exceeds a
pre-specified clinically defined minimum. Identifying LR achieves an important goal of precision medicine. The
causal effect of T compared to P among LRs is appraised based on the observed outcomes within strata of
samples matched on their prognostic score. It is well known that, especially for subsets of a random sample,
misspecification of the model can lead to spurious conclusions. To protect against this possibility in the
estimation of the prognostic score, we have adapted an approach, novel to RCTs, that we call the RCT dry run
(DRrct) diagnostic. It formally evaluates the potential for model misspecification. The value of the LR method
has been demonstrated in a reanalysis of a large multisite 26-week long double-blind RCT of extended release
gabapentin enacarbil (GE-XR) compared to placebo for the treatment of alcohol use disorder (AUD). Substantial
benefits of treatment with GE-XR were found for the subset of patients predicted to be LRs based on their clinical
features. In this research project, we will explore new statistical and machine learning modeling strategies for
the prognostic score function and expand our knowledge of the statistical properties of the LR and DRrct
methods. The goal is to minimize bias and increase precision in estimation of the prognostic score model and
increasing power to test treatment effects in the LR subpopulation. To accomplish this we will use three
strategies: analytic/theoretical methods where possible, simulation of RCTs and the reanalysis of six NIAAA
RCTs comparing treatments for AUD. Although in most of the six trials, no treatment differences were found, it
may be that LR subgroups can be identified whose members obtain substantial clinical benefit. Each reanalysis
will utilize the DRrct method to appraise the possibility of model misspecification. The LR method has the
potential to change standard practice for the analysis of RCTs, reduce the rate of failure caused by analyses
limited to whole sample mean differences, and facilitate personalized medicine; the DRrct method has the
potential to reduce the rate of irreproducible RCTs; and the reanalysis of the six NIAAA studies has the
possibility of uncovering clinically meaningful relationships between patient characteristics and likely
responders to previously studied candidate AUD treatments.
项目摘要/摘要
我们已经制定了一种使用潜在结果分析随机临床试验(RCT)的策略
因果框架。可能在试验结束时确定对测试治疗t的响应者(LRS)和
T和安慰剂之间的差异,在此丰富样本中进行P。确定LR
在试验结束时,通过拟合模型,称为预后分数函数,该模型估计了预期响应
t是基线特征的函数。 LR子集由其预期响应超过A的个体组成
预先指定的临床定义最小。确定LR实现了精确医学的重要目标。这
根据观察到的结果,根据观察到的结局,对LR的因果效应与LR相比。
样本与他们的预后分数相匹配。众所周知,特别是对于随机样品的子集,
该模型的错误指定可能导致虚假结论。防止这种可能性
预后分数的估计,我们已经改编了一种方法,用于RCT,我们称之为RCT Dry Run
(DRRCT)诊断。它正式评估了模型错误指定的潜力。 LR方法的值
在重新分析大型多站点26周长的双盲RCT的重新分析中已被证明
与安慰剂治疗酒精使用障碍(AUD)相比,Gabapentin Enacarbil(GE-XR)。重大的
发现用GE-XR治疗的益处是根据其临床预测为LRS的子集的子集
特征。在该研究项目中,我们将探讨新的统计和机器学习建模策略
预后分数功能并扩展我们对LR和DRRCT的统计特性的了解
方法。目的是在估计预后分数模型和
在LR亚群中测试治疗效应的功率增加。为此,我们将使用三个
策略:在可能的情况下进行分析/理论方法,RCT的模拟和六个NIAAA的重新分析
RCT比较AUD的治疗方法。尽管在六项试验中的大多数中,都没有发现治疗差异,但
可能是可以确定其成员获得可观临床益处的LR亚组。每次重新分析
将利用DRRCT方法来评估模型错误指定的可能性。 LR方法具有
改变标准实践以分析RCT,降低分析引起的故障率
限于整个样本平均差异,并促进个性化医学; DRRCT方法具有
降低不可衍生RCT的速率的潜力;六项NIAAA研究的重新分析具有
发现患者特征与可能的临床有意义的关系的可能性
对先前研究的候选AUD治疗的响应者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
EUGENE M LASKA其他文献
EUGENE M LASKA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('EUGENE M LASKA', 18)}}的其他基金
Likely responder analysis and tests of model misspecification in randomized controlled trials of treatments for Alcohol Use Disorder
酒精使用障碍治疗随机对照试验中的可能反应者分析和模型错误指定测试
- 批准号:
10522414 - 财政年份:2022
- 资助金额:
$ 73.36万 - 项目类别:
Leveraging biomarkers for personalized treatment of alcohol use disorder comorbid with PTSD
利用生物标志物对合并 PTSD 的酒精使用障碍进行个性化治疗
- 批准号:
10237284 - 财政年份:2018
- 资助金额:
$ 73.36万 - 项目类别:
Leveraging biomarkers for personalized treatment of alcohol use disorder comorbid with PTSD
利用生物标志物对合并 PTSD 的酒精使用障碍进行个性化治疗
- 批准号:
10473680 - 财政年份:2018
- 资助金额:
$ 73.36万 - 项目类别:
ESTIMATING THE SIZE OF POPULATION FROM A SINGLE SAMPLE
从单个样本估算总体规模
- 批准号:
3389395 - 财政年份:1993
- 资助金额:
$ 73.36万 - 项目类别:
ESTIMATING THE SIZE OF POPULATION FROM A SINGLE SAMPLE
从单个样本估算总体规模
- 批准号:
2249526 - 财政年份:1993
- 资助金额:
$ 73.36万 - 项目类别:
ESTIMATING THE SIZE OF POPULATION FROM A SINGLE SAMPLE
从单个样本估算总体规模
- 批准号:
2249527 - 财政年份:1993
- 资助金额:
$ 73.36万 - 项目类别:
相似国自然基金
结外鼻型NK/T细胞淋巴瘤免疫特征分析与临床转化研究
- 批准号:82370199
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于基因组-蛋白质组解析煤烟型肺癌分子特征及临床分群的研究
- 批准号:82360613
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于胆管癌基因组表观遗传特征的临床转化研究
- 批准号:82320108015
- 批准年份:2023
- 资助金额:210 万元
- 项目类别:国际(地区)合作与交流项目
肝癌干细胞中遗传和表观遗传变化的干性特征及与临床药物治疗反应关系研究
- 批准号:82372729
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
基于非可加测度与时序关联特征粗糙集的群决策方法及在中医临床疗效评价中的应用
- 批准号:72301082
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 73.36万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 73.36万 - 项目类别:
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 73.36万 - 项目类别:
Addressing Surgical Disparities at the Root; Working to improve diversity in the surgical workforce
从根本上解决手术差异;
- 批准号:
10639471 - 财政年份:2023
- 资助金额:
$ 73.36万 - 项目类别:
Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
- 批准号:
10637391 - 财政年份:2023
- 资助金额:
$ 73.36万 - 项目类别: