Resolving Spatiotemporal Determinants of Cell Specification in Corticogenesis with Latent Space Methods
用潜在空间方法解决皮质生成中细胞规格的时空决定因素
基本信息
- 批准号:10703714
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:ALS patientsAlgorithmsAnatomyAutomobile DrivingBRAIN initiativeBar CodesBehavioralBiologicalBiological AssayBrainBrain regionCCRL2 geneCRISPR/Cas technologyCatalogsCell CycleCell Cycle RegulationCellsCensusesCentral Nervous SystemClassificationCollectionCompetenceComplexComputer ModelsComputer softwareCoupledCuesDataData SetDevelopmentDimensionsDiseaseDoctor of PhilosophyExperimental ModelsGene ExpressionGene Expression ProfileGenerationsGenesGeneticGenetic TranscriptionGenetic VariationGenetic studyGoalsHuman GeneticsIn SituIndividualKnowledgeLearningLengthLinkLocationMachine LearningMeasurementMethodologyMethodsModelingMolecularMultiomic DataNatureNeurodegenerative DisordersNeuronal PlasticityPathway interactionsPatternPerformancePhasePhenotypePhysiologic pulsePositioning AttributeProbabilityProcessRegulationResearchRetinaSpecific qualifier valueStatistical ModelsStochastic ProcessesSystemTechniquesTestingTimeTrainingTranscriptional RegulationValidationVariantWorkanalytical toolbiological systemscell typedata integrationfunctional plasticitygenetic variantgenome wide association studyhigh dimensionalityimprovedinduced pluripotent stem cellmultimodal datanervous system developmentneuralneural circuitneuronal circuitryneuropsychiatric disordernovelnucleotide analogprogenitorrepositorysingle-cell RNA sequencingspatial integrationspatiotemporalstatisticssuccesssupervised learningtime usetooltransfer learning
项目摘要
Project Summary
High-throughput profiling of hundreds of thousands of cells in the central nervous system (CNS) is currently
underway. One of the goals of the BRAIN initiative is to build a census of cell types in the CNS, however
previous work in single cell RNA sequencing (scRNAseq) has demonstrated that reliance on small collections
of marker genes for cell type/state/position classification is insufficient to account for the dynamic nature of and
variation in cellular classes/states. Previous work from both myself and others has demonstrated that latent
space methods identify low dimensional patterns from high dimensional profiling data can discover molecular
drivers of cell types and states in scRNAseq. However, the use of algorithms untethered to biological
constraints or not extensively functionally validated can lead to the arbitrary delineation of cell class/state and
the trivial designation of “novel” cell types. As proper development of the CNS requires precise regulation and
coordination of spatial and temporal cues, the overall objective of this application is to develop analytic and
experimental methods that integrate spatiotemporal information with scRNAseq to learn meaningful latent
spaces. Specifically, I will 1) generate a comprehensive collection of transcriptional signatures for spatial
features of the brain, 2) build dimension reduction software to encode spatial and cell cycle information to
account for the highly specific organization of cells in the CNS, 3) derive a statistic, projectionDrivers, that
allows for quantification of the gene drivers of differential latent space usage, and 4) define a statistic,
proMapR, that will tell you the probability of a cell existing in a particular location in the brain at a given point in
time from the cell's transcriptional signature. The ability to define and validate biologically meaningful latent
spaces not only enables multiOmic data integration and exploratory analysis of scRNA-seq data via the
massive amount of publicly available data, but also lays the groundwork for multimodal data integration—a
necessary next step to characterize how individual cells and complex neural circuits interact in both time and
space.
项目摘要
目前,中枢神经系统(CNS)中数十万个细胞的高通量分析是
进行。大脑计划的目标之一是在中枢神经系统中建立细胞类型的普查,但是
单细胞RNA测序(SCRNASEQ)的先前工作证明了对小型集合的缓解
细胞类型/状态/位置分类的标记基因不足以说明和
细胞类别/状态的变化。我和他人的先前工作都证明了潜在
空间方法从高维分析数据中识别出低维模式可以发现分子
scrnaseq中细胞类型和状态的驱动因素。但是,使用算法不受限制地与生物学
约束或未在功能验证方面进行的约束是否可以导致单元类/状态的任意描述,并且
“新颖”细胞类型的琐碎设计。由于中枢神经系统的适当发展需要精确的监管,并且
空间和临时提示协调,本应用的总体目的是开发分析和
将时空信息与scrnaseq集成以学习有意义的潜在的实验方法
空间。具体来说,我将1)生成全面的空间转录签名
大脑的特征,2)构建缩小维度软件以编码空间和细胞周期信息
说明中枢神经系统中细胞的高度特定组织,3)得出一个统计量,投影驱动程序,即
允许量化差分潜在空间使用的基因驱动器,4)定义一个统计量,
Promapr,这将告诉您在特定位置在大脑中特定位置存在的细胞的可能性
来自单元的转录签名的时间。定义和验证生物学有意义的潜在能力
空间不仅可以通过该数据集成和探索性分析SCRNA-SEQ数据通过
大量公开数据,但也为多模式数据集成奠定了基础
必要的下一步来表征单个细胞和复杂的神经回路如何在时间和时间上相互作用
空间。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Genevieve Lauren Stein-O'Brien其他文献
Genevieve Lauren Stein-O'Brien的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Genevieve Lauren Stein-O'Brien', 18)}}的其他基金
Resolving Spatiotemporal Determinants of Cell Specification in Corticogenesis with Latent Space Methods
用潜在空间方法解决皮质生成中细胞规格的时空决定因素
- 批准号:
10188106 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Resolving Spatiotemporal Determinants of Cell Specification in Corticogenesis with Latent Space Methods
用潜在空间方法解决皮质生成中细胞规格的时空决定因素
- 批准号:
10378061 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
NURBS参数化的自交理论与算法研究
- 批准号:12301490
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
分组密码算法后门的研究
- 批准号:62302293
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
时序深度可加网络的算法与学习理论研究
- 批准号:62306338
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Exploratory Analysis Tools for Developmental Studies of Brain Microstructure with Diffusion MRI
利用扩散 MRI 进行脑微结构发育研究的探索性分析工具
- 批准号:
10645844 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Charge-Based Brain Modeling Engine with Boundary Element Fast Multipole Method
采用边界元快速多极子法的基于电荷的脑建模引擎
- 批准号:
10735946 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: