A systems-metabolism approach to identify mitochondria-dependent vulnerabilities in colorectal cancer
识别结直肠癌中线粒体依赖性脆弱性的系统代谢方法
基本信息
- 批准号:10703479
- 负责人:
- 金额:$ 38.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-12 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:Acetyl Coenzyme AAddressAnabolismAreaBacteriaBiochemical PathwayButyratesCellular Metabolic ProcessCirculationCitric Acid CycleColorectal CancerComplexComputer ModelsDataDependenceDietary InterventionEnvironmentEventExhibitsExposure toFeedsGenerationsGlycolysisGrowthHCT116 CellsHepaticHepatocyteHeterogeneityHumanInjectionsInner mitochondrial membraneKRAS oncogenesisKRAS2 geneLiverMAP Kinase GeneMalignant NeoplasmsMalignant neoplasm of pancreasMammalian CellMembraneMembrane PotentialsMetabolicMetabolismMetastatic Neoplasm to the LiverMicrobeMitochondriaMitochondrial MatrixMitochondrial ProteinsModelingMutationNeoplasm MetastasisNutrientOncogenesOncogenicOrganellesOxidative PhosphorylationPancreatic Ductal AdenocarcinomaPatientsPrimary NeoplasmProcessProliferatingPublishingReactionResearch Project GrantsRoleShapesSignal TransductionSiteStressStructureSurfaceSystemSystems AnalysisSystems BiologyTestingTissuesTumor PromotionVolatile Fatty AcidsWorkXenograft procedureadenomacancer cellcancer initiationcolon cancer cell linecolorectal cancer metastasisfatty acid metabolismgut bacteriagut microbiotahost microbiotahuman modelin vivoknowledge integrationliver metabolismmetastatic colorectalnutrient metabolismpredictive modelingprogramstumortumor growthtumor heterogeneitytumor metabolismtumor microenvironmenttumor progressiontumorigenesis
项目摘要
PROJECT ABSTRACT/SUMMARY
During tumorigenesis, mitochondrial function is altered by fusion/fission dynamics that control organelle
structure and impact overall cell metabolism. Signaling from oncogenic RAS fragments mitochondrial tubules
and causes metabolic changes that support tumor growth. However, the precise role of these oncogene-
driven mitochondrial changes on cancer metabolism is unclear, especially when considering the diverse
metabolic environments in which tumors develop. For example, colorectal cancer (CRC) initiates in the gut
where the microbiota produces high quantities of short chain fatty acids (SCFAs) that are metabolized by
normal colonocytes. During CRC tumorigenesis, mutations in the KRAS oncogene occur at the transition to
adenomas, suggesting that mitochondrial adaptation in the gut may be critical for progression of primary
tumors. And yet, the primary site of CRC metastasis is the liver, which provides a very different set of nutrients
for metabolism and growth. Recognizing the complexity of metabolic networks both inside and outside a
developing tumor, we propose a systems biology approach to examine the role of RAS-induced mitochondrial
fission in CRC. Specifically, our objective is to identify metabolic adaptations that permit mitochondrially
fragmented CRC cells to grow in the unique metabolic environment of the gut and metastatic CRC cells to
grow in the liver. While the fragmentation of the mitochondrial network can impact tumor metabolism in
multiple ways, we hypothesize that RAS-induced mitochondrial fragmentation leads to hyper-
compartmentalization of specific metabolic reactions within the mitochondrial matrix that depend on low-
abundance mitochondrial proteins. We predict that these adaptations create unique vulnerabilities in CRC
cells as they switch from normal SCFA metabolism to promote biosynthesis and energy generation. The
specific aims are to 1) curate a metabolic model of human CRC cells that incorporates the system-wide impact
of mitochondrial fragmentation and the availability of microbe-derived SCFAs; 2) instantiate metabolic models
of CRC with data characterizing in vivo metabolic states to assess impacts of gut microbiota metabolism and
mitochondrial fragmentation; and 3) evaluate the impact of metabolic adaptations to mitochondrial organelle
stress on CRC colonization and growth as liver metastases. Successful completion of this project will provide
a better understanding of CRC metabolism that may one day point to dietary interventions or shifts in the gut
microbiota that predictably influence organelle adaptation.
项目摘要/总结
在肿瘤发生过程中,控制细胞器的融合/裂变动力学改变了线粒体功能
结构并影响整体细胞代谢。致癌 RAS 信号传导使线粒体小管断裂
并引起支持肿瘤生长的代谢变化。然而,这些癌基因的确切作用-
驱动线粒体变化对癌症代谢的影响尚不清楚,特别是考虑到多种因素时
肿瘤生长的代谢环境。例如,结直肠癌 (CRC) 始于肠道
其中微生物群产生大量的短链脂肪酸 (SCFA),这些脂肪酸被代谢
正常结肠细胞。在 CRC 肿瘤发生过程中,KRAS 癌基因突变发生在向
腺瘤,表明肠道中的线粒体适应可能对于原发性腺瘤的进展至关重要
肿瘤。然而,结直肠癌转移的主要部位是肝脏,它提供了一组非常不同的营养物质
用于新陈代谢和生长。认识到体内和体外代谢网络的复杂性
发展中的肿瘤,我们提出了一种系统生物学方法来检查 RAS 诱导的线粒体的作用
CRC 中的裂变。具体来说,我们的目标是确定允许线粒体的代谢适应
破碎的结直肠癌细胞在肠道独特的代谢环境中生长,转移性结直肠癌细胞
生长在肝脏中。虽然线粒体网络的碎片化会影响肿瘤代谢
通过多种方式,我们假设 RAS 诱导的线粒体断裂会导致过度
线粒体基质内特定代谢反应的区室化取决于低
丰富的线粒体蛋白。我们预测这些调整会在 CRC 中造成独特的脆弱性
细胞从正常的 SCFA 代谢转变为促进生物合成和能量产生。这
具体目标是 1) 建立一个包含全系统影响的人类 CRC 细胞代谢模型
线粒体碎片和微生物来源的 SCFA 的可用性; 2)实例化代谢模型
CRC 的数据表征体内代谢状态,以评估肠道微生物群代谢的影响和
线粒体碎裂; 3)评估代谢适应对线粒体细胞器的影响
对结直肠癌定植和肝转移生长的压力。该项目的成功完成将提供
更好地了解结直肠癌代谢,有一天可能会指出饮食干预或肠道变化
可预测地影响细胞器适应的微生物群。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Francis Kashatus其他文献
David Francis Kashatus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Francis Kashatus', 18)}}的其他基金
A systems-metabolism approach to identify mitochondria-dependent vulnerabilities in colorectal cancer
识别结直肠癌中线粒体依赖性脆弱性的系统代谢方法
- 批准号:
10525283 - 财政年份:2022
- 资助金额:
$ 38.27万 - 项目类别:
Exploring the Role of Mitochondrial Fission in Pancreatic Tumorigenesis
探索线粒体裂变在胰腺肿瘤发生中的作用
- 批准号:
9004824 - 财政年份:2016
- 资助金额:
$ 38.27万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A systems-metabolism approach to identify mitochondria-dependent vulnerabilities in colorectal cancer
识别结直肠癌中线粒体依赖性脆弱性的系统代谢方法
- 批准号:
10525283 - 财政年份:2022
- 资助金额:
$ 38.27万 - 项目类别:
Metabolic Regulation of Articular Cartilage and Joint Homeostasis
关节软骨的代谢调节和关节稳态
- 批准号:
10202074 - 财政年份:2021
- 资助金额:
$ 38.27万 - 项目类别:
Metabolic Regulation of Articular Cartilage and Joint Homeostasis
关节软骨的代谢调节和关节稳态
- 批准号:
10447803 - 财政年份:2021
- 资助金额:
$ 38.27万 - 项目类别:
Metabolic Regulation of Articular Cartilage and Joint Homeostasis
关节软骨的代谢调节和关节稳态
- 批准号:
10656369 - 财政年份:2021
- 资助金额:
$ 38.27万 - 项目类别:
High throughput screen for discovery of N-acetyltransferase 8 Like (NAT8L) inhibitors
用于发现 N-乙酰转移酶 8 样 (NAT8L) 抑制剂的高通量筛选
- 批准号:
10319002 - 财政年份:2020
- 资助金额:
$ 38.27万 - 项目类别: