Molecular tools to decipher communication across the blood-brain barrier
破译跨血脑屏障通讯的分子工具
基本信息
- 批准号:10704542
- 负责人:
- 金额:$ 40.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-14 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAgingAmino AcidsBindingBioinformaticsBiological ModelsBiologyBloodBlood - brain barrier anatomyBlood CirculationBlood ProteinsBrainBrain DiseasesCarrier ProteinsCatalogsCause of DeathCaveolinsCell surfaceCellsChemicalsChemistryClathrinCommunicationContact TracingCuesDedicationsDisciplineDiseaseDoctor of PhilosophyDrug Delivery SystemsEndothelial CellsEndotheliumEngineeringExposure toFacultyFinancial SupportFrustrationFunctional disorderFundingGoalsHealthHealth protectionImmuneInflammatoryInstitutionLabelLeadershipLearningLicensingLigandsLigaseMediatingMentorsMentorshipMethodsMicrogliaMolecularMusNatureNervous System PhysiologyNeuroimmuneNeuronsNeurosciencesObservational StudyPaperPathway interactionsPerfusionPeripheralPermeabilityPhysiologicalPlasmaPlasma CellsPlasma ProteinsPositioning AttributePostdoctoral FellowPrincipal InvestigatorPrintingPropertyProtein SecretionProteinsProteomeProteomicsReportingResearchResearch Project GrantsRouteSecureSignal TransductionSiteStudentsSupport SystemT-LymphocyteTechniquesTherapeuticTight JunctionsTracerTrainingTransferrinUniversitiesblood-brain barrier crossingblood-brain barrier permeabilizationbrain healthcareercell motilitycell typeeffective therapyfaculty mentorin vivoinnovationintercellular communicationmigrationneuroinflammationnew therapeutic targetprotein transportreceptorrecruitresponsesenior facultysynthetic biologytargeted deliverytooltranscytosistransmission processundergraduate student
项目摘要
Project Summary/Abstract
The blood-brain barrier (BBB) maintains brain health by protecting the brain from the bloodstream. These
barrier properties frustrate the treatment of nearly all brain disorders, representing one of the largest
challenges in neuroscience and drug delivery. Yet, intriguingly, recent studies have discovered a variety of
surprising peripheral influences on brain function, hinting at the existence of underappreciated modes of
communication across the BBB. Indeed, while canonical BBB properties, such as paracellular tight junctions
and minimal caveolin-mediated transcytosis, have been established via a handful of standard tracers, it
remains unclear whether these tracers fully represent the BBB’s physiological interactions with and
permeability to the thousands of circulating proteins and cells it is constantly exposed to. By developing
methods to tag and track the blood plasma proteome, I recently observed an unexpected degree and diversity
of protein transport into the healthy adult brain. Thus, I hypothesize that brain health is maintained not just by
BBB impermeability—but by specific routes of blood-to-brain communication actively facilitated by the BBB.
Specifically, I propose that there are three logical routes for how peripheral information is communicated
across the healthy BBB: the direct transport of proteins into the brain; the responsive relay of proteins made by
the BBB into the brain; and the BBB-licensed migration of peripheral immune cells into the brain. By combining
proteome tagging techniques with bioorthogonal chemistries, each proposed aim explores one independent
route to systematically reveal the identities and mechanisms of the signals transmitted via the healthy BBB. I
will begin by creating a first catalog of plasma proteins that directly cross the BBB and quantifying their
permeabilities (Aim 1). I will subsequently characterize a new BBB relay function by deducing the signals the
BBB secretes into the brain in response to peripheral cues (Aim 2). Lastly, I will elucidate neuroimmune
surveillance by determining the BBB sites and molecules enabling healthy immune cell migration into the brain
(Aim 3). Together, these studies will expand our understanding of how the BBB maintains brain health and
enable new studies exploring the neurological functions of BBB-permeable proteins and cells in health, aging,
and disease. Our results will also provide a comprehensive set of functional targets to enhance drug delivery to
the brain, reveal new mechanisms to understand and blunt neuroinflammation, and generate innovative tools
to decipher intercellular communication for broad use across disciplines.
项目摘要/摘要
血脑屏障(BBB)通过保护大脑免受血液的影响来维持大脑健康。这些
屏障特性挫败了几乎所有脑部疾病的治疗,代表最大的脑部疾病之一
神经科学和药物输送方面的挑战。然而,有趣的是,最近的研究发现了各种各样的
令人惊讶
跨BBB的通信。确实,虽然规范的BBB特性,例如细胞细胞紧密连接
和最小的小窝蛋白介导的转胞膜作用是通过少数标准示踪剂建立的
尚不清楚这些示踪剂是否完全代表了BBB与和
对数千种循环蛋白和细胞的渗透性不断暴露于。通过发展
标记和跟踪血浆蛋白质组的方法,我最近观察到意外程度和多样性
蛋白质转运到健康的成年大脑中。我假设,不仅可以维持大脑健康
BBB的不渗透性 - 但是通过BBB积极支持的血液到脑通信的特定途径。
具体来说,我建议有三种逻辑途径用于如何传达外围信息
跨越健康的BBB:将蛋白质直接转运到大脑中;由
BBB进入大脑;以及BBB许可的外周免疫细胞迁移到大脑中。通过组合
蛋白质组标记技术带有生物正交化学,每个拟议的目标都探索一个独立的
系统地揭示通过健康BBB传输的信号的身份和机制的途径。
将首先创建第一个血浆蛋白目录,该血浆蛋白直接越过BBB并量化其
渗透率(目标1)。随后,我将通过推论信号来表征新的BBB继电器功能
BBB响应周围线索将大脑分泌到大脑中(AIM 2)。最后,我将阐明神经免疫
通过确定BBB位点和分子的监视,使健康的免疫细胞迁移到大脑
(目标3)。这些研究一起将扩大我们对BBB如何保持大脑健康和
启用新的研究,探讨BBB可渗透蛋白和细胞在健康,衰老,,
和疾病。我们的结果还将提供一组全面的功能目标,以增强药物输送到
大脑,揭示了了解和钝神经炎症的新机制,并生成创新的工具
破译细胞间通信,以跨学科的广泛使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Chris Yang其他文献
Andrew Chris Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Chris Yang', 18)}}的其他基金
Elucidating microvascular contributions to cognitive impairment at single-cell resolution
在单细胞分辨率下阐明微血管对认知障碍的影响
- 批准号:
10656541 - 财政年份:2022
- 资助金额:
$ 40.38万 - 项目类别:
Elucidating microvascular contributions to cognitive impairment at single-cell resolution
在单细胞分辨率下阐明微血管对认知障碍的影响
- 批准号:
10514105 - 财政年份:2022
- 资助金额:
$ 40.38万 - 项目类别:
Understanding how human brain vascular cells mediate genetic risk for Alzheimer's disease
了解人脑血管细胞如何介导阿尔茨海默病的遗传风险
- 批准号:
10511135 - 财政年份:2022
- 资助金额:
$ 40.38万 - 项目类别:
Understanding how human brain vascular cells mediate genetic risk for Alzheimer's disease
了解人脑血管细胞如何介导阿尔茨海默病的遗传风险
- 批准号:
10670867 - 财政年份:2022
- 资助金额:
$ 40.38万 - 项目类别:
相似国自然基金
温度作用下CA砂浆非线性老化蠕变性能的多尺度研究
- 批准号:12302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于波动法的叠层橡胶隔震支座老化损伤原位检测及精确评估方法研究
- 批准号:52308322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
- 批准号:52373051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
东北黑土中农膜源微塑料冻融老化特征及其毒性效应
- 批准号:42377282
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高层建筑外墙保温材料环境暴露自然老化后飞火点燃机理及模型研究
- 批准号:52376132
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 40.38万 - 项目类别:
Mitochondrial electron transport dysfunction: Dissecting pathomechanisms
线粒体电子传递功能障碍:剖析病理机制
- 批准号:
10679988 - 财政年份:2023
- 资助金额:
$ 40.38万 - 项目类别:
Exploring regulatory mechanisms of glyoxalase-1
探索乙二醛酶-1的调控机制
- 批准号:
10646721 - 财政年份:2023
- 资助金额:
$ 40.38万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 40.38万 - 项目类别:
Maternal organelle contribution to offspring germline health
母体细胞器对后代种系健康的贡献
- 批准号:
10607418 - 财政年份:2023
- 资助金额:
$ 40.38万 - 项目类别: