Core1: Computational
核心1:计算
基本信息
- 批准号:10688253
- 负责人:
- 金额:$ 34.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-17 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalActomyosinAdhesionsAdhesivesAffectBasement membraneBlood PlateletsBlood VesselsCell AdhesionCell Adhesion MoleculesCell DeathCell NucleusCell SurvivalCell modelCellsCharacteristicsChromatinChromatin StructureCouplingCytoskeletonDNA DamageData AnalyticsDimensionsElementsEndothelial CellsEndotheliumEnvironmentEpigenetic ProcessExtracellular MatrixExtravasationFeedbackFractalsGene ExpressionGene Expression RegulationGenetic TranscriptionGenomeGrainGrowthHistone DeacetylationImageIn VitroIndividualInvadedLamin Type ALaminsLengthLiquid substanceLiverMechanical StressMechanicsMediatingModelingModificationMolecularMorphologyMyosin Type IINeoplasm MetastasisNuclearNuclear EnvelopeNuclear LaminaOrganPatternPeptide HydrolasesPhenotypeProcessPropertyRegulationRoleRuptureShapesSkinSolidStressStructureTheoretical modelTimeTissuesTumor Cell Migrationbiophysical modelcancer cellcell motilitycomputerized toolscopingexperimental studyextracellularin vivoinnovationinsightmechanotransductionmigrationmulti-scale modelingneoplastic cellnucleocytoplasmic transportresponseshear stresssimulationstressorthree-dimensional modelingtooltranscriptome
项目摘要
Computational Core (Core A): SUMMARY
To guide and interpret the in vitro (Project 1) and in vivo experiments (Project 2) and to provide a physical basis
for changes in transcriptional patterns in response to mechanical stresses (Core B), this core will employ an
array of computational tools spanning a wide range of length and time scales. These include models for cell
adhesion, cytoskeletal function, cell-matrix interactions and 3D multiscale models for nuclear mechano-
transduction and chromatin organization. This suite of modeling tools will reveal non-linear interactions between
cell and nuclear deformation during of extravasation and migration, mechano-adaptation in response to fluid and
solid stresses, intravascular and extravascular niche properties and cell death for individual compared to
clustered CTCs. Significantly, modelling of 3D genome organization will allow us to elucidate the relationship
between the mechanics of the cell, chromatin organization, and transcription, thus providing new insights on how
mechanical stresses regulate gene expression during metastasis, and identification of reversible and persisting
chromatin deformation associates with cell survival or death.
Cancer cells invade individually or collectively, but the factors that govern their strategies to colonize the tissue
and their ability to survive intravascular stress and extravasation are poorly understood. While the coupling
between cell contractility, nuclear mechanotransduction, and adhesive interactions with the ECM and vessel wall
is known to affect cell adhesion and motility, the effects of this interplay on cell survival has yet to be rigorously
investigated. To elucidate the physical mechanisms involved in such regulation, we developed 3D chemo-
mechanical models to describe the three-way feedback between the adhesions, the cytoskeleton, and the
nucleus. The model shows local tensile stresses generated at the interface of the cell and the extracellular
environment regulate the properties of the nucleus, including nuclear morphology, levels of lamin A/C, histone
deacetylation and nucleo-cytoplasmic shuttling of YAP/TAZ, which in turn govern spatial chromatin organization,
gene expression and the ability of the cells to survive and cope with the mechanical stresses. Building on these
tools, the specific aims of this project are:
· Aim 1. Predict the role of vascular flow on tumor cell arrest and survival in the intravascular niche.
· Aim 2. Model the mechanochemical/molecular mechanisms of individual/collective extravasation
of CTCs.
· Aim 3. Predict the influence of alterations in chromatin organization and transcriptional patterns
induced by intravascular stress and extravasation on the survival and growth of migrating tumor
cells
计算核心(核心A):摘要
指导和解释体外(项目1)和体内实验(项目2)并提供物理基础
对于响应机械应力的转录模式的变化(核心B),该核心将员工
一系列计算工具,涵盖了一系列长度和时间尺度。这些包括细胞的模型
粘附,细胞骨架功能,细胞 - 矩阵相互作用和核机械的3D多尺度模型
转导和染色质组织。这套建模工具将揭示非线性相互作用
渗出和迁移期间的细胞和核变形,响应液体和机械适应
与个人相比
聚集的CTC。值得注意的是,3D基因组组织的建模将使我们能够阐明关系
在细胞的力学,染色质组织和转录之间,从而提供了有关如何
机械应力可调节转移过程中基因表达,并鉴定可逆和持续
染色质变形与细胞存活或死亡相关。
癌细胞单独或集体入侵,但是控制组织策略的因素
他们的生存能力在血管内压力和渗出的能力上鲜为人知。耦合
在细胞收缩力,核机械转导和与ECM和容器壁的粘合剂相互作用之间
已知会影响细胞粘合剂和运动性,该相互作用对细胞存活的影响尚未严格
调查。为了阐明这种调节所涉及的物理机制,我们开发了3D化学
机械模型描述粘连,细胞骨架和粘附之间的三向反馈
核。该模型显示在细胞的界面和细胞外产生的局部拉伸应力
环境调节核us的性质,包括核形态,层粘连蛋白A/C的水平,组蛋白
YAP/TAZ的脱乙酰化和核胞质穿梭,这又控制了空间染色质组织,
基因表达以及细胞生存和应对机械应力的能力。建立在这些基础上
工具,该项目的具体目的是:
·目标1。预测血管流动对肿瘤细胞停滞和血管内生物中的生存的作用。
目标2。建模个体/集体渗出的机械化学/分子机制
CTC。
目标3。预测染色质组织和转录模式中改变的影响
由血管内应激和对迁移肿瘤生存和生长的渗出引起的诱导
细胞
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vivek Shenoy其他文献
Vivek Shenoy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vivek Shenoy', 18)}}的其他基金
Integration of elasticity, viscosity, and plasticity in cellular mechanosensing
细胞力传感中弹性、粘度和塑性的整合
- 批准号:
10668320 - 财政年份:2020
- 资助金额:
$ 34.14万 - 项目类别:
Integration of elasticity, viscosity, and plasticity in cellular mechanosensing
细胞力传感中弹性、粘度和塑性的整合
- 批准号:
10462741 - 财政年份:2020
- 资助金额:
$ 34.14万 - 项目类别:
Integration of elasticity, viscosity, and plasticity in cellular mechanosensing
细胞力传感中弹性、粘度和塑性的整合
- 批准号:
9973613 - 财政年份:2020
- 资助金额:
$ 34.14万 - 项目类别:
Integration of elasticity, viscosity, and plasticity in cellular mechanosensing
细胞力传感中弹性、粘度和塑性的整合
- 批准号:
10246375 - 财政年份:2020
- 资助金额:
$ 34.14万 - 项目类别:
Uncovering mechanical mechanisms of traumatic axonal injury
揭示创伤性轴突损伤的机械机制
- 批准号:
9751855 - 财政年份:2016
- 资助金额:
$ 34.14万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
丙酮酸激酶催化肌动球蛋白磷酸化调控肉嫩度的分子机制
- 批准号:32372263
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
鱼糜肌动球蛋白的增效转化及其氧化控制分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:32172242
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
相似海外基金
Generation of Neurons by Force-Mediated Epigenetic Mechanisms through Manipulation of Intrinsic Mechanoregulators
通过操纵内在机械调节器通过力介导的表观遗传机制产生神经元
- 批准号:
10664507 - 财政年份:2023
- 资助金额:
$ 34.14万 - 项目类别:
Mechanics of Cells & Tissues impact Chromosome Instability & Phagocytic Interactions
细胞力学
- 批准号:
10626283 - 财政年份:2023
- 资助金额:
$ 34.14万 - 项目类别:
Regulation of Adherent Cell Proliferation by Matrix Viscoelasticity
基质粘弹性对贴壁细胞增殖的调节
- 批准号:
10735701 - 财政年份:2023
- 资助金额:
$ 34.14万 - 项目类别:
Role of AJC in umbrella cell function and dysfunction
AJC 在伞细胞功能和功能障碍中的作用
- 批准号:
10655616 - 财政年份:2021
- 资助金额:
$ 34.14万 - 项目类别: