Protein Self-Assembly into Nanoaggregates
蛋白质自组装成纳米聚集体
基本信息
- 批准号:8791748
- 负责人:
- 金额:$ 14.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2015-09-21
- 项目状态:已结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseAmyloidosisAttentionCell NucleusCharacteristicsComplexCouplingDataDepositionDevelopmentDiagnosticDimerizationDiseaseEncephalopathiesEventFilamentFoundationsGoalsGrowthHealthHumanHuman PathologyHuntington DiseaseImageKineticsKnowledgeLeadLengthLinkLongevityMeasuresMechanicsMethodsMissionModelingMolecularMorphologyNanotechnologyNatureNeurodegenerative DisordersParkinson DiseasePathologyPeptidesPhasePlayPolymersPreventionPreventivePreventive InterventionPrion DiseasesProcessProteinsPublic HealthPublicationsReportingResearchResolutionRoleSpectrum AnalysisStagingStructureTechniquesTestingTherapeuticTherapeutic InterventionTimeTranslatingTranslationsWorkbasechemical propertydesigndimerfunctional groupimprovedinnovationmonomernanonanoimagingnanoprobeneurotoxicnovelprotein aggregationprotein misfoldingresearch studyself assemblysingle moleculesynthetic peptidesynucleintool
项目摘要
DESCRIPTION (provided by applicant): Self-assembly of proteins and peptides into nanoaggregates of various sizes and morphologies is a widespread phenomenon reported for a large number of proteins and synthetic peptides. Misfolding and aggregation of proteins are associated with a wide range of human pathologies termed protein misfolding or deposition neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases. Despite the important contribution of protein misfolding and spontaneous aggregation to disease pathology, very little is known about the molecular mechanisms underlying these processes. It has been shown that oligomeric species rather long filaments are neurotoxic, but the nature of these species remains unknown. The objective of this application is to characterize the nano-oligomers formed at the early stages of self-assembly and identify the species critically involved in aggregation. The oligomers are formed transiently during the aggregation process, and their characterization requires special approaches capable of probing such species. This application proposes a set of such approaches to attain our objective. Based on preliminary data, the central hypothesis is that formation of dimers is the key step for promoting aggregation and that the lifetimes of dimeric complexes define the misfolding-aggregation paths. The rationale for the proposed research is that understanding fundamental mechanisms of protein misfolding and aggregation has the potential to translate into specific approaches to control the aggregation process. These advances will lead to the development of new and innovative preventions and treatments of protein misfolding diseases. Guided by strong preliminary data, our major hypothesis will be tested by pursuing three specific aims: 1) Identify key nuclei for the aggregation kinetic; 2) Image directly early stages of the self-assembly process; and 3) Develop novel linkers and tethers for AFM experiments. Under the first aim, the characterization of oligomeric states will be performed. A novel nanoapproach capable of probing transiently formed oligomeric species will be developed. Under the second aim, the assembly of oligomers of each size starting from dimers will be visualized directly. We will be able to measure directly the time-dependent change of the concentration of each oligomer and to identify which species play a role of building blocks for the growth of aggregates. It is hypothesized that the fibrilization requires formation of oligomers of a defined size. We will be able to directly test this hypothesis. A novel nanoimaging approach capable of unambiguous visualizing each oligomer according to its size and quantitative analysis of the kinetics of their formation will be developed. Under the third aim, a novel type of polymer linker will be developed to facilitate completion of the previous aims. The approach is innovative, because it presents a novel model for the protein aggregation process and develops a set of novel nanotechnology methods with broad biomedical applications to test this model. The proposed research is significant because the findings will lay the foundation for developing efficient treatments of protein misfolding diseases at the very early stages.
描述(由申请人提供):蛋白质和肽自组装成各种尺寸和形态的纳米聚集体是大量蛋白质和合成肽所报道的普遍现象。蛋白质的错误折叠和聚集与多种人类病理学相关,称为蛋白质错误折叠或沉积神经退行性疾病,例如阿尔茨海默病、帕金森病和亨廷顿病。尽管蛋白质错误折叠和自发聚集对疾病病理学具有重要贡献,但人们对这些过程背后的分子机制知之甚少。已经表明,相当长的丝状寡聚物种具有神经毒性,但这些物种的性质仍然未知。该应用的目的是表征在自组装早期阶段形成的纳米低聚物,并确定参与聚集的关键物种。低聚物是在聚集过程中瞬时形成的,它们的表征需要能够探测此类物质的特殊方法。该应用程序提出了一组此类方法来实现我们的目标。根据初步数据,中心假设是二聚体的形成是促进聚集的关键步骤,并且二聚体复合物的寿命定义了错误折叠聚集路径。拟议研究的基本原理是,了解蛋白质错误折叠和聚集的基本机制有可能转化为控制聚集过程的特定方法。这些进展将导致蛋白质错误折叠疾病的新的和创新的预防和治疗方法的开发。在强有力的初步数据的指导下,我们的主要假设将通过追求三个具体目标来检验:1)识别聚集动力学的关键核; 2) 直接对自组装过程的早期阶段进行成像; 3) 开发用于 AFM 实验的新型连接器和系链。在第一个目标下,将进行寡聚态的表征。将开发一种能够探测瞬时形成的寡聚物质的新型纳米方法。在第二个目标下,从二聚体开始的各种尺寸的低聚物的组装将被直接可视化。我们将能够直接测量每种低聚物浓度随时间的变化,并确定哪些物种在聚集体生长中发挥着构建模块的作用。据推测,原纤维化需要形成限定尺寸的低聚物。我们将能够直接检验这个假设。将开发一种新颖的纳米成像方法,能够根据其大小明确地可视化每种低聚物,并对其形成动力学进行定量分析。在第三个目标下,将开发一种新型聚合物连接体以促进前面目标的完成。该方法具有创新性,因为它提出了蛋白质聚集过程的新颖模型,并开发了一套具有广泛生物医学应用的新颖纳米技术方法来测试该模型。拟议的研究意义重大,因为这些发现将为在早期阶段开发有效的蛋白质错误折叠疾病治疗方法奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YURI L LYUBCHENKO其他文献
YURI L LYUBCHENKO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YURI L LYUBCHENKO', 18)}}的其他基金
Nanoscale assembly of amyloid oligomers at physiologically relevant conditions
淀粉样蛋白寡聚物在生理相关条件下的纳米级组装
- 批准号:
10733250 - 财政年份:2023
- 资助金额:
$ 14.64万 - 项目类别:
Bioscope II - AFM system for Nanoimaging Core Facility
Biscope II - 用于纳米成像核心设施的 AFM 系统
- 批准号:
7212020 - 财政年份:2007
- 资助金额:
$ 14.64万 - 项目类别:
Nanomedicine Center for Protein Deposition Diseases(RMI)
蛋白质沉积疾病纳米医学中心(RMI)
- 批准号:
6931370 - 财政年份:2004
- 资助金额:
$ 14.64万 - 项目类别:
相似国自然基金
基于充分降维方法的复杂疾病多层次调控模型研究
- 批准号:82304239
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抑制性tRNA(suppressor tRNA, sup-tRNA)通读CFTR无义突变治疗囊性纤维化疾病小鼠的研究
- 批准号:82370099
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
SVCI疾病进展中多尺度脑结构-功能耦合演变规律的研究
- 批准号:82302142
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新的先天性甲减致病基因CNTN6突变导致疾病的发生及其机制研究
- 批准号:82301943
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于纸基微流控芯片的食源性疾病致病因子即时检测技术研究
- 批准号:22304022
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of apoE-mediated meningeal lymphatic remodeling in the pathophysiology of Alzheimer’s disease
apoE 介导的脑膜淋巴重塑在阿尔茨海默病病理生理学中的作用
- 批准号:
10734287 - 财政年份:2023
- 资助金额:
$ 14.64万 - 项目类别:
Anti-medin immunotherapy for vascular aging and related dementias
针对血管老化和相关痴呆的抗 Medin 免疫疗法
- 批准号:
10724869 - 财政年份:2023
- 资助金额:
$ 14.64万 - 项目类别:
BIN1-interactome in Alzheimer's disease pathophysiology
BIN1-相互作用组在阿尔茨海默病病理生理学中的作用
- 批准号:
10677190 - 财政年份:2023
- 资助金额:
$ 14.64万 - 项目类别:
Chronic Pain and Risk of Alzheimer's-Related Neurodegeneration
慢性疼痛和阿尔茨海默病相关神经变性的风险
- 批准号:
10644253 - 财政年份:2023
- 资助金额:
$ 14.64万 - 项目类别:
CLEC7A in microglia biology and Alzheimer's disease
CLEC7A 在小胶质细胞生物学和阿尔茨海默病中的作用
- 批准号:
10659940 - 财政年份:2023
- 资助金额:
$ 14.64万 - 项目类别: