A Novel Class of Synthetic Receptors to Empower the Age of mRNA Therapies

一类新型合成受体将推动 mRNA 治疗时代的到来

基本信息

  • 批准号:
    10687517
  • 负责人:
  • 金额:
    $ 135.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-19 至 2026-09-18
  • 项目状态:
    未结题

项目摘要

Abstract The COVID vaccination campaigns have highlighted the promise of mRNA-mediated delivery as a novel therapeutic modality. One particular application is adoptive cell therapy, where immune cells are equipped with novel functions to treat diseases, e.g., expressing chimeric antigen receptors (CARs) in T cells to ablate cancer and other undesirable cells. Compared to DNA-based engineering of immune cells, mRNA has several advantages as a delivery vector, especially its superior safety profile, because it eliminates the risk of randomly inserting into the host genome and causing mutations, and its short half-life mitigates long-term adverse effects due to the persistence of the engineered cellular function. Instead of extracting cells from the patient, engineering them ex vivo, and then reinducing them, researchers have even directly delivered CAR-encoding mRNAs and created functional CAR T cells in vivo. This is appealing because it has the potential to make adoptive cell therapy accessible to the general public, its logistics almost as straightforward as manufacturing, distributing, and administering vaccine shots, in contrast to the costly ex vivo engineering process that will be limited to the privileged few. Despite the great potential of mRNA-mediated adoptive cell therapy, there remains a critical need for tools that enhance targeting precision. It is very rare for a single surface marker, targeted by CAR, to unambiguously identify one target cell population. Therefore, “on-target/off-caner” killing is a major concern for CAR T cell therapies against cancer, and the same concern also applies to scenarios of ablating other cells, such as active fibroblasts in heart infarction or senescent cells. One elegant solution is synthetic receptors, most notably synthetic Notch, that detect a second marker and express CAR in response, effectively forming AND logic, where target cells are only killed when both inputs to the synthetic receptor and CAR are present. However, to our knowledge, all existing synthetic modular, programmable receptors operate at the DNA level, and are therefore incompatible with mRNA-mediated delivery. Here we design and demonstrate the feasibility of a first-in-class synthetic modular receptor that operate at the RNA level. It converts ligand-induced dimerization events into the expression of arbitrary output proteins. Through extensive computational simulation and experimental optimization, we will expand the input/output repertoire of this receptor, establish its design principle, enable its encoding on single transcripts and delivery by mRNA, and take first steps towards improving the precision of ablating active fibroblasts to treat heart infarction. The impact of such novel receptors is beyond adoptive cell therapy. For example, they can facilitate basic research by recording cells’ (e.g., neurons) exposure to specific signals (e.g., dopamine). They will benefit a variety of other biomedical applications too, from expressing antigens or cytokines in response to extracellular cues to enhance vaccine efficacy, to generating novel sense-and-respond capabilities for tissue engineering.
抽象的 COVID疫苗活动强调了mRNA介导的分娩的希望 治疗方式。一种特殊应用是自适应细胞疗法,其中免疫细胞配备了 治疗疾病的新功能,例如,在T细胞中表达嵌合抗原受体(CAR)以消融癌症 和其他不良细胞。与免疫细胞基于DNA的工程相比,mRNA具有多个 作为交付向量的优势,尤其是其出色的安全性,因为它消除了随机的风险 插入宿主基因组并引起突变,其短期寿命减轻了长期不良反应 由于工程细胞功能的持续存在。与其从患者中提取细胞,而是工程 他们是体内的,然后重新诱导了它们,研究人员甚至直接交付了汽车编码的mRNA和 在体内创建功能性汽车T细胞。这是因为它有可能制作自适应细胞的潜力 公众可以使用的治疗,其物流几乎与制造,分发, 并管理疫苗射击,与代价高昂的体内工程过程相反,该过程仅限于 特权很少。 尽管mRNA介导的自适应细胞疗法具有很大的潜力,但仍然需要 增强定位精度的工具。对于由汽车靶向的单个表面标记非常罕见 明确识别一个目标细胞群。因此,“靶标/脱离驾驶员”杀戮是一个主要关注的问题 针对癌症的CAR T细胞疗法,同样的关注也适用于消灭其他细胞的场景, 例如心脏梗塞或感觉细胞中的活性成纤维细胞。一种优雅的解决方案是合成受体,大多数 值得注意的是合成缺口,检测第二个标记并在响应中表达汽车,有效地形成和 逻辑,只有在存在合成接收器和汽车的两个输入时,目标细胞才会被杀死。然而, 据我们所知,所有现有的合成模块化,可编程接收器均在DNA级别运行,并且是 因此与mRNA介导的递送不兼容。 在这里,我们设计并演示了操作的第一类合成模块化接收器的可行性 在RNA级别。它将配体诱导的二聚事件转换为任意输出蛋白的表达。 通过大量的计算模拟和实验优化,我们将扩展输入/输出 该受体的曲目,建立其设计原理,使其在单个成绩单上进行编码,并通过 mRNA,并迈出了提高减轻活性成纤维细胞以治疗心脏梗塞的精确度的第一步。 这种新型受体的影响超出了自适应细胞疗法。例如,它们可以促进基本 通过记录细胞(例如神经元)暴露于特定信号(例如多巴胺)的研究。他们将受益 从表达抗原或细胞因子的各种生物医学应用也是细胞外的 提高疫苗效率的提示,从而为组织工程产生新颖的感官和响应能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Xiaojing J Gao的其他基金

Program the Immune System against RAS-driven Cancer
对免疫系统进行编程以对抗 RAS 驱动的癌症
  • 批准号:
    10612257
    10612257
  • 财政年份:
    2023
  • 资助金额:
    $ 135.08万
    $ 135.08万
  • 项目类别:
Cancer Classifiers Based on RNA Sensors in Living Cells
基于活细胞中 RNA 传感器的癌症分类器
  • 批准号:
    10570559
    10570559
  • 财政年份:
    2022
  • 资助金额:
    $ 135.08万
    $ 135.08万
  • 项目类别:
Cancer Classifiers Based on RNA Sensors in Living Cells
基于活细胞中 RNA 传感器的癌症分类器
  • 批准号:
    10707194
    10707194
  • 财政年份:
    2022
  • 资助金额:
    $ 135.08万
    $ 135.08万
  • 项目类别:
Synthetic DNA-free Circuits for “Scarless” Programming of Mammalian Cells
用于哺乳动物细胞“无痕”编程的合成无 DNA 电路
  • 批准号:
    10115864
    10115864
  • 财政年份:
    2020
  • 资助金额:
    $ 135.08万
    $ 135.08万
  • 项目类别:
Synthetic DNA-free Circuits for “Scarless” Programming of Mammalian Cells
用于哺乳动物细胞“无痕”编程的合成无 DNA 电路
  • 批准号:
    10379933
    10379933
  • 财政年份:
    2020
  • 资助金额:
    $ 135.08万
    $ 135.08万
  • 项目类别:

相似海外基金

Liver-Gut Axis in Neonatal Anemia and Its Role in RBC Transfusion Associated Gut Injury
新生儿贫血中的肝肠轴及其在红细胞输注相关肠道损伤中的作用
  • 批准号:
    10583807
    10583807
  • 财政年份:
    2023
  • 资助金额:
    $ 135.08万
    $ 135.08万
  • 项目类别:
Liver-Gut Axis in Neonatal Anemia and Its Role in RBC Transfusion Associated Gut Injury
新生儿贫血中的肝肠轴及其在红细胞输注相关肠道损伤中的作用
  • 批准号:
    10834574
    10834574
  • 财政年份:
    2023
  • 资助金额:
    $ 135.08万
    $ 135.08万
  • 项目类别:
Targeting FOXP3 mRNA splicing for breast cancer immunotherapy
靶向 FOXP3 mRNA 剪接用于乳腺癌免疫治疗
  • 批准号:
    10717185
    10717185
  • 财政年份:
    2023
  • 资助金额:
    $ 135.08万
    $ 135.08万
  • 项目类别:
Contribution of PAG to Immune Synapse Organization and PD-1 Function
PAG 对免疫突触组织和 PD-1 功能的贡献
  • 批准号:
    10538164
    10538164
  • 财政年份:
    2022
  • 资助金额:
    $ 135.08万
    $ 135.08万
  • 项目类别:
Focused ultrasound control of intratumoral NKG2DL BTE production by CART cells to potentiate epitope spread
聚焦超声控制 CART 细胞瘤内 NKG2DL BTE 的产生,以增强表位扩散
  • 批准号:
    10656254
    10656254
  • 财政年份:
    2022
  • 资助金额:
    $ 135.08万
    $ 135.08万
  • 项目类别: