Structure and Function of Hetero-multimeric Glutamate Receptors
异多聚谷氨酸受体的结构和功能
基本信息
- 批准号:8631945
- 负责人:
- 金额:$ 35.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-05-08 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:AMPA ReceptorsAgonistAllosteric RegulationAlzheimer&aposs DiseaseArchitectureBaculovirusesBindingBiochemicalBrainCalciumComplexCrystallizationCrystallographyCytosolDetectionDevelopmentDiseaseEarly PromotersElectrophysiology (science)ElementsExtracellular DomainFamilyG-Protein-Coupled ReceptorsGated Ion ChannelGlutamate ReceptorGlutamatesGlycineGoalsGuidelinesHeterogeneityIon ChannelKnowledgeLigand Binding DomainLigandsMK801MagnesiumMammalsMediatingMemantineMembraneMembrane ProteinsMental DepressionMethodologyMethodsMolecularMolecular ConformationMolecular StructureN-Methyl-D-Aspartate ReceptorsNeurotransmittersParkinson DiseasePatternPeptide HydrolasesPermeabilityPhosphotransferasesPhysiologyPlayProductionPropertyProtein SubunitsProteinsPublic HealthRNA SplicingRecombinantsRegulationResearchResolutionRoleSamplingSchizophreniaSeizuresShapesStrokeStructureStructure-Activity RelationshipSynaptic TransmissionSynaptic plasticitySystemTechniquesTherapeuticTransmembrane DomainTreatment EfficacyVariantbaseconformational alterationdesigndimerinhibitor/antagonistinsightnervous system disordernovelpostsynapticpresynapticprotein complexpublic health relevancereceptorresearch studyscreeningstemstructural biologysuccessvoltage
项目摘要
PROJECT SUMMARY
The overall goal of the research studies proposed here is to obtain high-resolution structures of intact hetero-
multimeric N-methyl-D-aspartate receptors (NMDARs). NMDARs belong to the family of ionotropic glutamate
receptors, which mediate the majority of excitatory synaptic transmission in mammalian brains. Dysfunctional
NMDARs are implicated in various neurological disorders and diseases including schizophrenia, depression,
Alzheimer's disease, and Parkinson's disease. A unique aspect of NMDARs is that they are obligatory hetero-
tetramers or higher oligomers composed of GluN1 and GluN2 (A-D) or GluN3 (A-B) subunits. Opening of
NMDAR ion channels requires binding of glycine to GluN1 and GluN3 and glutamate to GluN2. To date,
structural studies of NMDARs have been limited to the hetero-dimeric structures of the GluN1 and GluN2
extracellular domains. Thus, there is no clear knowledge on how subunits and domains are arranged to form
hetero-multimeric ion channels and how transmembrane ion channel pores are shaped to confer specific
properties of NMDAR ion channels including high calcium conductance and voltage-dependent magnesium
block. Despite various technological breakthroughs, success in crystallographic studies on eukaryotic
membrane proteins has been limited due to difficulties in expression, purification, and crystallization stemming
from sample heterogeneity and instability. Importantly, there has been no crystal structure of eukaryotic hetero-
multimeric membrane proteins that are recombinantly produced to date. The fact that numerous ion channels,
G protein-coupled receptors, receptor kinases, and intramembrane proteases implicated in neurological
diseases exist as hetero-multimers in native states points to the great need for structural studies on hetero-
multimeric membrane proteins. To obtain the first crystal structure of hetero-multimeric ion channels and to
understand the structure-function relationship of NMDARs, we will conduct research with the following two
aims: Aim 1 is to produce intact hetero-multimeric NMDAR proteins using our novel methodology and to
biochemical characterize the homogeneously purified proteins; and Aim 2 is to complete structural analysis of
intact NMDARs in complex with various ligands reflecting different functional states by applying cutting-edge
techniques in membrane protein crystallography and validate structure-based functional hypotheses by
biochemical and electrophysiological experiments. Successful completion of the proposed studies is expected
to result in the first crystal structure of a hetero-multimeric ion channel and to provide a mechanistic
understanding of NMDARs that are critical in brain physiology and development. Importantly, the structural
information obtained here will also provide strategies to develop compounds with therapeutic efficacy in
neurological disorders and diseases. Furthermore, these studies on NMDARs will establish fundamental
guidelines for crystallography on hetero-multimeric membrane proteins.
项目概要
这里提出的研究的总体目标是获得完整异质结构的高分辨率结构。
多聚体 N-甲基-D-天冬氨酸受体 (NMDAR)。 NMDAR 属于离子型谷氨酸家族
受体,介导哺乳动物大脑中大部分兴奋性突触传递。功能失调
NMDAR 与多种神经系统紊乱和疾病有关,包括精神分裂症、抑郁症、
阿尔茨海默病和帕金森病。 NMDAR 的一个独特之处在于它们是强制性的异质性
由 GluN1 和 GluN2 (A-D) 或 GluN3 (A-B) 亚基组成的四聚体或更高级的寡聚体。开幕
NMDAR 离子通道需要甘氨酸与 GluN1 和 GluN3 结合,以及谷氨酸与 GluN2 结合。迄今为止,
NMDAR 的结构研究仅限于 GluN1 和 GluN2 的异二聚体结构
细胞外结构域。因此,对于亚基和结构域如何排列形成尚不清楚
异多聚体离子通道以及跨膜离子通道孔的形状如何赋予特定的
NMDAR 离子通道的特性,包括高钙电导和电压依赖性镁
堵塞。尽管取得了各种技术突破,真核生物晶体学研究仍然取得了成功
由于表达、纯化和结晶堵塞的困难,膜蛋白受到限制
来自样本的异质性和不稳定性。重要的是,目前还没有真核异质的晶体结构。
迄今为止重组产生的多聚体膜蛋白。事实上,大量的离子通道,
G 蛋白偶联受体、受体激酶和膜内蛋白酶与神经系统相关
疾病在天然状态下以异源多聚体的形式存在,这表明非常需要对异源多聚体进行结构研究。
多聚体膜蛋白。获得第一个异多聚离子通道的晶体结构并
了解NMDAR的结构与功能关系,我们将通过以下两个方面进行研究
目标:目标 1 是使用我们的新方法生产完整的异源多聚体 NMDAR 蛋白,并
对均质纯化的蛋白质进行生化表征;目标 2 是完成结构分析
通过应用尖端技术,完整的 NMDAR 与反映不同功能状态的各种配体复合
膜蛋白晶体学技术并验证基于结构的功能假设
生化和电生理实验。预计拟议研究将成功完成
产生异多聚离子通道的第一个晶体结构并提供机械
了解对大脑生理学和发育至关重要的 NMDAR。重要的是,结构
这里获得的信息还将提供开发具有治疗功效的化合物的策略
神经系统疾病和疾病。此外,这些关于 NMDAR 的研究将建立基础
异源多聚体膜蛋白晶体学指南。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hiroyasu Furukawa其他文献
Hiroyasu Furukawa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hiroyasu Furukawa', 18)}}的其他基金
Structure and function of hetero-multimeric ligand-gated ion channels
异多聚配体门控离子通道的结构和功能
- 批准号:
9905566 - 财政年份:2019
- 资助金额:
$ 35.91万 - 项目类别:
Structure and function of hetero-multimeric ligand-gated ion channels
异多聚配体门控离子通道的结构和功能
- 批准号:
10357877 - 财政年份:2019
- 资助金额:
$ 35.91万 - 项目类别:
Structure and function of hetero-multimeric ligand-gated ion channels
异多聚配体门控离子通道的结构和功能
- 批准号:
10593042 - 财政年份:2019
- 资助金额:
$ 35.91万 - 项目类别:
Structure and function of hetero-multimeric ligand-gated ion channels
异多聚配体门控离子通道的结构和功能
- 批准号:
10593042 - 财政年份:2019
- 资助金额:
$ 35.91万 - 项目类别:
Structure and Function of Hetero-multimeric Glutamate Receptors
异多聚谷氨酸受体的结构和功能
- 批准号:
9034604 - 财政年份:2014
- 资助金额:
$ 35.91万 - 项目类别:
Structure and Function of Hetero-multimeric Glutamate Receptors
异多聚谷氨酸受体的结构和功能
- 批准号:
9249073 - 财政年份:2014
- 资助金额:
$ 35.91万 - 项目类别:
Structure and Function of Hetero-multimeric Glutamate Receptors
异多聚谷氨酸受体的结构和功能
- 批准号:
8847340 - 财政年份:2014
- 资助金额:
$ 35.91万 - 项目类别:
Structure and Function of Hetero-multimeric Glutamate Receptors
异多聚谷氨酸受体的结构和功能
- 批准号:
9276955 - 财政年份:2014
- 资助金额:
$ 35.91万 - 项目类别:
STRUCTURE AND FUNCTION OF HETERO-MULTIMERIC GLUTAMATE RECEPTORS
异源多聚谷氨酸受体的结构和功能
- 批准号:
9026103 - 财政年份:2014
- 资助金额:
$ 35.91万 - 项目类别:
相似国自然基金
α7nAChR激动剂通过PGC-1α和HO-1调控肾小管上皮细胞线粒体的质和量进而改善脓毒症急性肾损伤的机制研究
- 批准号:82372172
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于纳米铝乳剂和模式识别受体激动剂的复合型佐剂研究
- 批准号:82341043
- 批准年份:2023
- 资助金额:110 万元
- 项目类别:专项基金项目
新型IL2Rβγ激动剂逐级控释联合放疗对抗三阴性乳腺癌的作用及机制研究
- 批准号:82303819
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
卡瓦胡椒中选择性大麻素2型受体激动剂的发现及其抗骨质疏松作用研究
- 批准号:82360684
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
脂质纳米粒体内介导嵌合抗原受体-M1型巨噬细胞协同TLR激动剂治疗实体瘤的研究
- 批准号:82304418
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Single-particle cryo-EM characterization of AMPA receptor functional states
AMPA 受体功能状态的单颗粒冷冻电镜表征
- 批准号:
9926319 - 财政年份:2018
- 资助金额:
$ 35.91万 - 项目类别: