Next-generation ultrafast functional 3D pulmonary imaging
下一代超快功能 3D 肺部成像
基本信息
- 批准号:10687214
- 负责人:
- 金额:$ 7.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-07 至 2024-09-06
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAlveolusAsthmaAttentionAwardBronchiolitisCaringCause of DeathCessation of lifeChronic Obstructive Pulmonary DiseaseClinicalClinical ResearchCommunitiesContrast MediaDetectionDevicesDiagnosisDiffusionDiseaseDisease ProgressionDoseEarly DiagnosisEffectivenessEquipmentFDA approvedFaceFatty acid glycerol estersFoodFunctional ImagingFutureGasesGoalsHourHumanImageImaging TechniquesInhalationIonizing radiationIsomerismLungLung diseasesMRI ScansMagnetic Resonance ImagingMammographyMapsModalityModelingMonitorNoble GasesNuclearPathologyPatient-Focused OutcomesPerfusionPersonsPhasePhysicsPhysiologic pulsePneumoniaPopulationPositron-Emission TomographyPreparationProcessProductionPropaneProtonsPulmonary FibrosisRadiation-Induced CancerRelaxationReportingResearchResearch ProposalsResolutionRiskRoentgen RaysSafetyScientistSheepSignal TransductionTechniquesThree-Dimensional ImagingTimeTissuesTrainingVariantWaterWomanX-Ray Computed Tomographycancer imagingcareerclinical imagingclinical translationclinically relevantcoronavirus diseasecostdesigneffectiveness studyhigh throughput technologyidiopathic pulmonary fibrosisimaging capabilitiesimaging modalityimprovedin vivolung imaginglung injurymagnetic fieldmennext generationnovelpulmonary functionresearch studyscreeningskillssoft tissuestructural imagingtooltreatment responsetumorultrasoundventilationviral epidemic
项目摘要
PROJECT SUMMARY
Deadly diseases such as COPD, asthma, lung injury, constrictive bronchiolitis, and pulmonary fibrosis affect
>300 million people worldwide and cause ~3 million annual deaths. There is currently no widespread clinical
imaging modality to perform high-resolution functional lung imaging: CT, conventional MRI, and X-ray can only
provide structural images of dense tissues—informing about pathologies like tumors and pneumonia—but
yielding little or no information about lung ventilation, perfusion, alveoli size, etc. This state of affairs contrasts
with cancer imaging, which includes MRI, CT, ultrasound, mammography, PET and others, which collectively
enable early detection (via population screening), diagnoses, and monitoring response to treatment.
Furthermore, CT scans expose the body to ionizing radiation, and thus cannot be performed frequently due to
increased risk associated with cancer-inducing radiation. MRI of hyperpolarized noble gases (e.g. 129Xe) reports
on lung function: ventilation and diffusion. Despite remarkable research breakthroughs in this field demonstrating
the effectiveness and safety of hyperpolarized noble gas MRI to detect a wide range of lung diseases and monitor
response to treatment, the prospects for widespread clinical adaptation of this imaging modality face major
challenges, including (i) the high cost and complexity of the equipment for production of hyperpolarized 129Xe
gas, and (ii) the requirement for a customized MRI scanner capable of 129Xe – note, all FDA-approved MRI
scanners can image only protons. We have developed clinical-scale production of proton-hyperpolarized
propane gas. The process of hyperpolarized propane gas production is remarkably simple, highly efficient and
low-cost. A dose of contrast agents can be prepared in 2 seconds using disposable hyperpolarizer. Moreover,
propane is already FDA-approved for unlimited safe use in foods. Therefore, hyperpolarized propane lung MRI
can obviate the challenges of hyperpolarized 129Xe gas. Under this training award, I will be trained to develop
next-generation 3D ultra-fast lung imaging capability using three spin isomers of hyperpolarized propane gas. I
hypothesize that it may be possible to create highly symmetric hyperpolarized propane spin isomer capable of
retaining hyperpolarized state for ~1 minute in the gas phase at clinically relevant conditions. Sub-second 3D
MRI of these spin isomers can produce background-free functional lung images of gas diffusion and ventilation.
In this project, I will develop clinical-scale production of these spin isomers and their ultrafast MRI in excised
sheep lungs with the goal of systematic relaxation mapping for future in vivo studies. The clinical translation of
this new fast and low-cost imaging modality will revolutionize pulmonary imaging and pulmonary care of a wide
range of lung diseases—this is my long-term career goal.
项目摘要
致命疾病,例如COPD,哮喘,肺损伤,狭窄的细支气管炎和肺纤维化影响
>全球> 3亿人,每年约300万人死亡。目前没有宽度临床
进行高分辨率功能性肺成像的成像方式:CT,常规MRI和X射线只能
提供密集组织的结构图像 - 关于肿瘤和肺炎等病理的信息 - 但
几乎没有或根本没有有关肺通风,灌注,肺泡大小等的信息。这种状态对比了
癌症成像,其中包括MRI,CT,超声检查,乳房X线摄影,PET等
启用早期检测(通过人口筛查),诊断和监测对治疗的反应。
此外,CT扫描使身体暴露于电离辐射,因此无法经常进行
与癌症诱导辐射有关的风险增加。超极化贵重气体的MRI(例如129X)报告
关于肺功能:通风和扩散。尽管在这一领域的研究突破很显着表明
超极性贵重气体MRI的有效性和安全性检测多种肺部疾病并监测
对治疗的反应,这种成像方式的宽度临床适应的前景面对主要
挑战,包括(i)生产超极的设备的高成本和复杂性
气体和(ii)能够使用129xE的定制MRI扫描仪的要求 - 注意,所有FDA批准的MRI
扫描仪只能成像质子。我们已经开发了质子 - 高磨砂的临床规模产生
丙烷气。超极化丙烷气体产生的过程非常简单,高效,并且
低成本。可以使用一次性超极化剂在2秒钟内制备一定剂量的对比剂。而且,
丙烷已经被FDA批准了,以无限制地在食品中安全使用。因此,超极化丙烷肺MRI
可以消除超极化129x气体的挑战。根据这个培训奖,我将接受培训以发展
下一代3D超快速肺成像能力使用三个自旋异构体的超极化丙烷气体。我
假设可以创建高度对称的超极化丙烷旋转异构体
在临床相关条件下,在气相中将超极化状态保持〜1分钟。次秒3D
这些自旋异构体的MRI可以产生无背景的气体扩散和通风肺图像。
在这个项目中,我将开发这些旋转异构体及其超快MRI的临床规模产生
绵羊肺的目标是系统的放松映射,以供未来的体内研究。的临床翻译
这种新的快速和低成本成像模式将彻底改变肺部成像和肺部护理
肺部疾病范围 - 这是我的长期职业目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nuwandi M Ariyasingha U W其他文献
Nuwandi M Ariyasingha U W的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nuwandi M Ariyasingha U W', 18)}}的其他基金
Next-generation ultrafast functional 3D pulmonary imaging
下一代超快功能 3D 肺部成像
- 批准号:
10314284 - 财政年份:2021
- 资助金额:
$ 7.2万 - 项目类别:
Next-generation ultrafast functional 3D pulmonary imaging
下一代超快功能 3D 肺部成像
- 批准号:
10534125 - 财政年份:2021
- 资助金额:
$ 7.2万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 7.2万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 7.2万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 7.2万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 7.2万 - 项目类别: