Genetic Analysis of Neuronal Hypoxia Resistance
神经元耐缺氧的遗传分析
基本信息
- 批准号:10683094
- 负责人:
- 金额:$ 33.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AerobicAntioxidantsAutophagocytosisBindingBiologicalBiological ModelsCOVID-19CRISPR/Cas technologyCaenorhabditis elegansCellsCerebral PalsyChIP-seqDiseaseDrug Metabolic DetoxicationEnhancersEnvironmentEnzymesEtiologyExcisionGene ExpressionGenerationsGenesGeneticGenetic Enhancer ElementGenetic ModelsGenetic TranscriptionGluconeogenesisHydroxylationHypoxiaHypoxia Inducible FactorImpairmentIndividualIschemic StrokeMalignant NeoplasmsMetabolicMetabolismMitochondriaMuscleMutationMyocardial InfarctionNADPNerve DegenerationNeuronal HypoxiaNeuronsOrganismOrthologous GeneOxidative PhosphorylationOxidative StressPathway interactionsPentosephosphate PathwayPhasePlayProcollagen-Proline DioxygenaseProductionProlineProteinsProteolysisPulmonary HypertensionReactive Oxygen SpeciesReduced GlutathioneRegulationReporterReproducibilityResistanceRoleSideSolid NeoplasmSourceTestingTissuesTranscriptional RegulationTraumatic Brain InjuryWarburg Effectcombatdeprivationdisorder preventionexperimental studygenetic analysishuman diseasehypoxia inducible factor 1in vivometabolomicsmodel organismmutantnormoxianovelpromoterprotective pathwayreceptorresponsespinal cord and brain injurystem cell nichetherapeutic targettissue culturetranscriptometranscriptome sequencingubiquitin ligase
项目摘要
PROJECT SUMMARY
Hypoxia (O2 deprivation) plays a central role in diverse human diseases, including ischemic stroke, myocardial
infarction, pulmonary hypertension, Cerebral Palsy, COVID-19, and cancer. Metazoans respond to hypoxia by
employing the conserved hypoxia response pathway. The pathway senses O2 through a prolyl hydroxylase
(PHD) enzyme, which uses O2 to hydroxylate specific proline side chains on the Hypoxia Inducible Factor α
(HIFα). Once hydroxylated, HIFα is ubiquitinated by the Von Hippel-Lindau (VHL) ubiquitin ligase, resulting in
its proteolysis. When O2 is abundant, HIFα is unstable. When hypoxia ensues, PHD enzymes lack O2 to
hydroxylate HIFα, resulting in HIFα stabilization and the transcriptional regulation of multiple target genes that
help the organism survive. Under some circumstances (e.g., solid tumors, stem cell niches), HIFα is activated
despite adequate O2 levels (i.e., the Warburg effect), but how the response differs under aerobic conditions is
unclear. While the HIFα pathway has been well studied in tissue culture, a full understanding of how it
operates in specific tissues (particularly neurons) in vivo to provide tailored responses is needed.
This proposal takes advantage of genetics and an intact, isogenic model organism (C. elegans) that
can thrive under hypoxia, and whose environment and genetics can be controlled with fidelity and
reproducibility. C. elegans possess single genes for the PHD (EGL-9), the VHL (VHL-1), and the HIFα (HIF-1).
The overall premise of this proposal is that the hypoxia response pathway pathway protects against hypoxic
damage by (1) removing mitochondria through mitophagy, which eliminates a source of ROS, and by (2)
mobilizing antioxidant metabolism, which detoxifies ROS during hypoxia and reoxygenation. A better
understanding of the pathway response will provide therapeutic targets for diseases associated with hypoxia.
Preliminary ChIP-seq, RNA-seq, and metabolomics suggest that HIF-1 promotes gluconeogenesis, the
pentose phosphate pathway, and antioxidant generation. We hypothesize that HIF-1 promotes this metabolic
reprograming by binding an enhancer sequence and activating the expression of the PEP carboxykinase pck-
1, a key enzyme for moving metabolites through gluconeogenesis. Aim 1 tests this hypothesis by using
CRISPR/Cas9 editing to remove this enhancer, then testing for the effects on HIF-1 binding, pck-1 and global
gene expression, metabolism, oxidative stress resistance, neurodegeneration, and hypoxia survival.
Preliminary cell biological approaches with a genetically encoded fluorescent reporter for mitophagy
suggest that HIF-1 promotes mitophagy. We hypothesize that HIF-1 promotes mitophagy by binding
enhancer sequences and activating the expression of the mitophagy receptors fndc-1 and dct-1. Aim 2 tests
this hypothesis by using CRISPR/Cas9 editing to remove these enhancers, then testing for the effects on HIF-
1 binding, global gene expression, mitophagy and bulk autophagy, metabolism, oxidative stress resistance,
neurodegeneration, and hypoxia survival.
项目概要
缺氧(缺氧)在多种人类疾病中发挥着核心作用,包括缺血性中风、心肌病
梗塞、肺动脉高压、脑瘫、COVID-19 和后生动物对缺氧的反应。
采用保守的缺氧反应途径,该途径通过脯氨酰羟化酶感知 O2。
(PHD) 酶,使用 O2 羟基化缺氧诱导因子 α 上的特定脯氨酸侧链
(HIFα) 一旦羟基化,HIFα 就会被 Von Hippel-Lindau (VHL) 泛素连接酶泛素化,从而产生
当氧气充足时,HIFα 不稳定;当缺氧时,PHD 酶缺乏氧气。
羟基化 HIFα,导致 HIFα 稳定和多个靶基因的转录调节
在某些情况下(例如实体瘤、干细胞生态位),HIFα 被激活。
尽管有足够的氧气水平(即瓦尔堡效应),但在有氧条件下反应有何不同是
虽然 HIFα 通路已在组织培养中得到了充分研究,但仍不清楚它是如何发挥作用的。
需要在体内特定组织(特别是神经元)中运作以提供定制的反应。
该提案利用了遗传学和完整的等基因模型生物(秀丽隐杆线虫),
可以在缺氧条件下茁壮成长,并且其环境和遗传可以精确控制
线虫拥有 PHD (EGL-9)、VHL (VHL-1) 和 HIFα (HIF-1) 的单一基因。
该提案的总体前提是缺氧反应途径可防止缺氧
通过 (1) 通过线粒体自噬去除线粒体,从而消除 ROS 来源,以及 (2)
动员抗氧化代谢,在缺氧和复氧过程中更好地解毒活性氧。
了解通路反应将为缺氧相关疾病提供治疗靶点。
初步 ChIP-seq、RNA-seq 和代谢组学表明 HIF-1 促进糖异生,
我们认为 HIF-1 可以促进这种代谢。
通过结合增强子序列并激活 PEP 羧激酶 pck- 的表达来重新编程
1,一种通过糖异生移动代谢物的关键酶,目的 1 通过使用来测试这一假设。
CRISPR/Cas9 编辑删除该增强子,然后测试对 HIF-1 结合、pck-1 和全局的影响
基因表达、代谢、氧化应激抵抗、神经变性和缺氧生存。
使用基因编码荧光报告基因进行线粒体自噬的初步细胞生物学方法
表明 HIF-1 促进线粒体自噬 我们发现 HIF-1 通过结合促进线粒体自噬。
增强子序列并激活线粒体自噬受体 fndc-1 和 dct-1 的表达 Aim 2 测试。
这个假设是通过使用 CRISPR/Cas9 编辑去除这些增强子,然后测试对 HIF 的影响
1 结合、全局基因表达、线粒体自噬和大量自噬、代谢、氧化应激抵抗、
神经退行性变和缺氧生存。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher G Rongo其他文献
Christopher G Rongo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher G Rongo', 18)}}的其他基金
Multi-Omic Analysis of BMP-Insulin Signaling Crosstalk in Lipid Metabolism during Aging
衰老过程中脂质代谢中 BMP-胰岛素信号串扰的多组学分析
- 批准号:
10351581 - 财政年份:2022
- 资助金额:
$ 33.73万 - 项目类别:
Multi-Omic Analysis of BMP-Insulin Signaling Crosstalk in Lipid Metabolism during Aging
衰老过程中脂质代谢中 BMP-胰岛素信号串扰的多组学分析
- 批准号:
10553134 - 财政年份:2022
- 资助金额:
$ 33.73万 - 项目类别:
Genetic Analysis of Neuronal Hypoxic Stress Resistance
神经元耐缺氧应激的遗传分析
- 批准号:
9753252 - 财政年份:2012
- 资助金额:
$ 33.73万 - 项目类别:
Genetics Analysis of Neuronal Hypoxic Stress Resistance
神经元耐缺氧应激的遗传学分析
- 批准号:
8650508 - 财政年份:2012
- 资助金额:
$ 33.73万 - 项目类别:
Genetic Analysis of Neuronal Hypoxic Stress Resistance
神经元耐缺氧应激的遗传分析
- 批准号:
9979647 - 财政年份:2012
- 资助金额:
$ 33.73万 - 项目类别:
Genetics Analysis of Neuronal Hypoxic Stress Resistance
神经元耐缺氧应激的遗传学分析
- 批准号:
8457043 - 财政年份:2012
- 资助金额:
$ 33.73万 - 项目类别:
Genetics Analysis of Neuronal Hypoxic Stress Resistance
神经元耐缺氧应激的遗传学分析
- 批准号:
8629773 - 财政年份:2012
- 资助金额:
$ 33.73万 - 项目类别:
相似国自然基金
农用地膜抗氧化剂的土壤污染特征及其微生物效应与机制研究
- 批准号:42377223
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
塑料抗氧化剂内分泌干扰转化产物的识别与环境行为研究
- 批准号:22306042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
取代对苯二胺抗氧化剂及其醌衍生物的人体内暴露标志物研究
- 批准号:22306031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗氧化剂/活性离子时序释放复合支架构建及其修复糖尿病骨缺损的机制研究
- 批准号:32360232
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
长江口盐度梯度下光诱导氯自由基驱动纳塑料老化及其抗氧化剂的抑制作用
- 批准号:42377372
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目