Measuring Lipid Flux By Ultra High Resolution Mass Spectrometry
通过超高分辨率质谱测量脂质通量
基本信息
- 批准号:10683133
- 负责人:
- 金额:$ 41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-05 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:Animal ModelAtherosclerosisBiochemical PathwayBiochemistryBiomedical ResearchCardiovascular DiseasesChromatographyCollaborationsCommunitiesDataData CollectionDeuteriumDevelopmentDiabetes MellitusDiagnosisDiseaseElectrospray IonizationEngineeringEnvironmentFatty LiverFatty acid glycerol estersGoalsHumanInfusion proceduresInterventionIonsIsotope LabelingIsotopesLabelLipid BiochemistryLipidsLocationMalignant NeoplasmsManufacturerMapsMass Spectrum AnalysisMeasuresMetabolicMetabolic syndromeModernizationNerve DegenerationNoisePatientsProteomicsProtocols documentationRadioisotopesResearchResolutionSignal TransductionSoftware ToolsSourceSpecificityStable Isotope LabelingTechniquesTechnologyTimeTracerTrainingTranslatingWatereffective therapyeffectiveness measureexperiencehuman diseaseimplementation barriersimprovedin vivoinstrumentlipid biosynthesislipid metabolismlipidomicsmass spectrometermouse geneticsmouse modelmultidisciplinarynovelprogramsstable isotopetechnology validationtoolultra high resolution
项目摘要
Project Summary:
Many human diseases are caused by a dysregulation of lipid metabolism, including atherosclerosis,
cancer, neurodegeneration, diabetes, and fatty liver. The development of effective treatments for lipid related
disorders is hinder by a lack of modern in vivo biochemistry techniques for studying lipid metabolism. The
overall goal of this proposal is to develop tools and protocol to measure the rates of lipid biosynthesis and
remodeling by stable isotope labeling with sensitivity comparable to radio-isotope tracing with the specificity
and broad coverage of modern mass spectrometry based lipidomics. This is enabled by an ultra-high
resolution orbitrap mass spectrometer I developed in collaboration of Thermo Scientific, now commercially
available as the Lumos 1M. This instrument has sufficient resolution to resolve the natural abundance 13C
from a tracer isotope, for example 2H, in intact lipid ions. By resolving the dominant natural abundance ions
from tracer isotopes will improve the signal to noise ratio by at least 2 orders of magnitude (1:1 vs >1:100) and
increase the dynamic range. This advancement will allow in vivo analysis of lipid metabolism to study a
variety of disease, and will ultimately lead to lipid fluxomics analysis that is translatable to human studies. By
measuring lipid flux in patients we will be able to directly studying the progression of metabolic syndrome,
potentially circumventing the need for animal models, and measure the effectiveness of therapies and
interventions.
To facilitate the development and widespread implementation of this technology, I will address the
fundamental roadblocks to adapting this technology. Firstly, the commercial instrument is engineered for
proteomics applications, in particular the electrospray ionization source. By working with the manufacturer and
translating my lipidomics experience to this new platform I will overcome these issue. Secondly, I will develop
novel data collection approaches for both chromatography and direct infusion based applications to
accommodate the long transient time and coalescence issues associated with ultra-high resolution resonance
based mass spectrometry. Thirdly, software tools will be developed to extract ultra-high resolution data in a
time efficient manner, convert the data to physically interpretable parameters, and map data onto biochemical
pathways. Lastly, I will develop protocols and platforms for stable isotope labeling by deuterium labeled water
(D2O) and other isotope labeled metabolic tracers in mouse models of metabolic syndrome relevant to my lab’s
research program studying the mechanism for fat accumulation. By accomplishing these aims this technology
will be accessible to the biomedical research community. My multi-disciplinary training in engineering,
physical, analytical and biochemistry, and mouse genetics makes me well-suited to develop this technology
and the lipid centric research environment at UT Southwestern is the ideal location for the initial application.
项目概要:
许多人类疾病都是由脂质代谢失调引起的,包括动脉粥样硬化、
癌症、神经退行性疾病、糖尿病和脂肪肝的有效治疗方法的开发。
由于缺乏研究脂质代谢的现代体内生物化学技术而阻碍了疾病的发展。
该提案的总体目标是开发工具和协议来测量脂质生物合成和
通过稳定同位素标记进行重建,其灵敏度与放射性同位素示踪的特异性相当
以及基于现代质谱的脂质组学的广泛覆盖,这是通过超高的能力实现的。
我与 Thermo Scientific 合作开发的分辨率轨道阱质谱仪,现已商业化
Lumos 1M 该仪器具有足够的分辨率来解析自然丰度 13C。
来自完整脂质离子中的示踪同位素,例如 2H,通过解析主要的自然丰度离子。
来自示踪同位素的信号将提高信噪比至少 2 个数量级(1:1 vs >1:100)
增加动态范围将允许体内脂质代谢分析来研究。
多种疾病,最终将导致可转化为人类研究的脂质通量组学分析。
测量患者的脂质通量我们将能够直接研究代谢综合征的进展,
可能规避对动物模型的需求,并衡量治疗的有效性和
干预措施。
为了促进这项技术的发展和广泛实施,我将解决
采用该技术的基本障碍首先,商业仪器的设计目的是。
蛋白质组学应用,特别是电喷雾电离源 通过与制造商合作。
将我的脂质组学经验转化为这个新平台,我将克服这些问题。
适用于色谱法和直接输注应用的新颖数据收集方法
适应与超高分辨率共振相关的长瞬态时间和聚结问题
第三,将开发软件工具来提取超高分辨率数据。
时间高效的方式,将数据转换为物理上可解释的参数,并将数据映射到生化
最后,我将开发氘标记水稳定同位素标记的方案和平台。
(D2O) 和其他同位素标记的代谢示踪剂在与我实验室相关的代谢综合征小鼠模型中
研究脂肪积累机制的研究计划通过实现这些目标这项技术。
我的工程多学科培训将可供生物医学研究界使用,
物理、分析和生物化学以及小鼠遗传学使我非常适合开发这项技术
德克萨斯大学西南分校以脂质为中心的研究环境是初始应用的理想场所。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Alvin Mitsche其他文献
Matthew Alvin Mitsche的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Alvin Mitsche', 18)}}的其他基金
Measuring Lipid Flux By Ultra High Resolution Mass Spectrometry
通过超高分辨率质谱法测量脂质通量
- 批准号:
10027699 - 财政年份:2020
- 资助金额:
$ 41万 - 项目类别:
Measuring Lipid Flux By Ultra High Resolution Mass Spectrometry
通过超高分辨率质谱测量脂质通量
- 批准号:
10796725 - 财政年份:2020
- 资助金额:
$ 41万 - 项目类别:
Measuring Lipid Flux By Ultra High Resolution Mass Spectrometry
通过超高分辨率质谱法测量脂质通量
- 批准号:
10470178 - 财政年份:2020
- 资助金额:
$ 41万 - 项目类别:
Measuring Lipid Flux By Ultra High Resolution Mass Spectrometry
通过超高分辨率质谱法测量脂质通量
- 批准号:
10251244 - 财政年份:2020
- 资助金额:
$ 41万 - 项目类别:
Determining the Function of PNPLA3 Utilizing Metabolomics and Stable Isotope Labe
利用代谢组学和稳定同位素标记确定 PNPLA3 的功能
- 批准号:
8743229 - 财政年份:2013
- 资助金额:
$ 41万 - 项目类别:
Determining the Function of PNPLA3 Utilizing Metabolomics and Stable Isotope Labe
利用代谢组学和稳定同位素标记确定 PNPLA3 的功能
- 批准号:
9128645 - 财政年份:2013
- 资助金额:
$ 41万 - 项目类别:
相似国自然基金
通过自主研发的AAV8-TBG-LOX-1基因治疗技术祛除支架区域氧化型低密度脂蛋白抑制支架内新生动脉粥样硬化研究
- 批准号:82370348
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
HMGCS2调控巨噬细胞训练免疫对动脉粥样硬化斑块“维稳”的机制研究
- 批准号:82373884
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于NLRP3炎性小体驱动的巨噬细胞焦亡研究穗花杉双黄酮抗动脉粥样硬化作用
- 批准号:82360786
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于HDAC10/PANX1探讨外源性褪黑素抑制巨噬细胞焦亡稳定动脉粥样硬化易损斑块的作用机制
- 批准号:82300511
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于仿生脂质纳米疫苗的动脉粥样硬化双重免疫治疗策略及机制研究
- 批准号:22305170
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Structurally engineered furan fatty acids for the treatment of dyslipidemia and cardiovascular disease
结构工程呋喃脂肪酸用于治疗血脂异常和心血管疾病
- 批准号:
10603408 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Targeting the hepatic adropin signaling pathway in obesity
靶向肥胖中的肝脏 adropin 信号通路
- 批准号:
10677279 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
IDO1 regulation of SR-BI and cholesterol homeostasis in macrophages
IDO1 对巨噬细胞中 SR-BI 和胆固醇稳态的调节
- 批准号:
10731003 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
NKA/CD36 signaling in adipocytes promotes oxidative stress and drives chronic inflammation in atherosclerosis
脂肪细胞中的 NKA/CD36 信号传导促进氧化应激并驱动动脉粥样硬化的慢性炎症
- 批准号:
10655793 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Dual action nanomatrix coated stent evaluation using engineered artery sheets with atherosclerotic features
使用具有动脉粥样硬化特征的工程动脉片材进行双作用纳米基质涂层支架评估
- 批准号:
10451235 - 财政年份:2022
- 资助金额:
$ 41万 - 项目类别: