A novel paradigm of sensitization of the tumor microenvironment with image-guided ultrasound cavitation and mechanotherapeutics for targeted HCC treatment
通过图像引导超声空化和机械治疗对肿瘤微环境进行敏化的新范例,用于靶向 HCC 治疗
基本信息
- 批准号:10683239
- 负责人:
- 金额:$ 61.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAcademiaAcuteAngiotensin ReceptorAnimalsAntihypertensive AgentsBAY 54-9085Biological AvailabilityBiomedical EngineeringBiophysical ProcessBlood VesselsCancer EtiologyCessation of lifeChemoembolizationClinicalClinical ResearchClinical TrialsCollaborationsDevelopmentDiagnosisDisciplineDiseaseDoseDoxorubicinDrug Delivery SystemsDrug TargetingEffectivenessEligibility DeterminationExcisionFutureGenetic EngineeringGoalsHepatotoxicityIndustryKnockout MiceLiverLosartanMalignant NeoplasmsMechanicsMediatingMicrobubblesModelingMonitorNatureOncologyOperative Surgical ProceduresOutcomePatientsPharmaceutical PreparationsPharmacotherapyPrimary carcinoma of the liver cellsProceduresPropertyPublic HealthResearchResearch PersonnelResistanceRiskScientistSystemic TherapyTechniquesTestingTherapeuticTherapeutic InterventionTimeToxic effectTransplantationTreatment EfficacyTreatment outcomeWorkadvanced diseasecancer cellcancer typechemotherapeutic agentchemotherapycurative treatmentshuman modelimage guidedimprovedin vivo Modelinnovationinterestliver cancer modelmechanical propertiesmouse modelnovelnovel therapeutic interventionprecision medicinepreclinical efficacypreclinical studypressureresponsesubcutaneoussynergismsystemic toxicitytherapy outcometumortumor microenvironmentultra high resolutionultrasounduptake
项目摘要
ABSTRACT
The purpose of this project is to develop a novel image-guided approach for modulating the tumor
microenvironment (TME) of HCC with combined mechanotherapeutic drugs (MechTx) and ultrasound cavitation
treatment (USCTx), and evaluate its therapeutic efficacy. We plan to implement USCTx and the targeting and
monitoring of the combined (with MechTx) treatment on a clinical scanner in order to make it widely available for
future preclinical and clinical studies. Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related
deaths worldwide with an estimated 750,000 new cases per year. Most patients with HCC who are not candidates
for surgical removal or ablation are treated with either transarterial chemoembolization or systemic
chemotherapy. Yet these treatments result in only limited improvements in patient survival at the expense of
considerable toxicities. Our main hypothesis is that the combined USCTx and MechTx will lead to tumor
pressure, stiffness and vascular changes that promote increased local tumor uptake of systemic or transarterial
chemotherapeutics, and will result in better therapy outcomes. While the discovery of new chemotherapeutic
agents and interventional procedures will continue to evolve, our approach to modulate the TME with combined
MechTx and USCTx aims to dramatically improve chemotherapy outcomes with both the existing and future
chemotherapy agents. A strong interdisciplinary team (bioengineers, scientists, clinicians) from academia and
industry will collaborate in the following aims: (Aim 1) Evaluate the ability of MechTx to modulate the tumor
microenvironment and enhance drug delivery; (Aim 2) Evaluate the ability of USCTx to modulate the tumor
microenvironment and enhance drug delivery; (Aim 3) Evaluate the ability of combined MechTx and USCTx to
modulate the tumor microenvironment and enhance drug delivery; and (Aim 4) Demonstrate the preclinical
efficacy of chemotherapeutics when combined with MechTx and USCTx in survival studies using two in vivo
models of HCC. The innovation of the project is in: (a) the use of MechTx as a novel therapeutic strategy to
modulate tumor pressure, microvascular flow, and stiffness of the TME; (b) implementing image-guided USCTx
on a clinical ultrasound scanner leading to translatable precision medicine for HCC; (c) utilizing the synergy of
MechTx and USCTx as a novel and innovative approach for modulating the TME to maximize chemotherapy
outcomes; and (d) combining super resolution and nonlinear Doppler processing to spatially and temporarily
super-resolve the vasculature of tumors undergoing treatments that target the TME. The proposed project will
take advantage of the distinct, yet synergistic mechanisms of MechTx and USCTx as a novel paradigm of
sensitization of the TME to chemotherapeutics, leading to better treatment outcomes and overall survival for
HCC patients initially and patients of other malignancies and diseases in the future.
抽象的
该项目的目的是开发一种调节肿瘤的新型图像引导方法
HCC的微环境(TME),具有合并的机械疗法药物(MECHTX)和超声气蚀
治疗(USCTX),并评估其治疗功效。我们计划实施USCTX和目标
在临床扫描仪上监测合并的(使用机甲)治疗,以使其广泛使用
未来的临床前和临床研究。肝细胞癌(HCC)是与癌症有关的第三主要原因
全球死亡人数估计每年有75万例新病例。大多数不是候选人的HCC患者
为了手术去除或消融,用跨性化学栓塞或全身治疗
化学疗法。然而,这些治疗只会导致患者生存的改善有限
相当大的毒性。我们的主要假设是联合USCTX和MECHTX会导致肿瘤
压力,刚度和血管变化会促进全身或跨性别的局部肿瘤吸收增加
化学治疗药,并将带来更好的治疗结果。而发现新的化学治疗性
代理和介入程序将继续发展,我们通过合并调节TME的方法
MECHTX和USCTX旨在与现有和未来的化疗结果显着改善化学疗法
化学疗法剂。来自学术界的强大跨学科团队(生物工程师,科学家,临床医生)
行业将在以下目的中进行合作:(目标1)评估机器人调节肿瘤的能力
微环境并增强药物输送; (AIM 2)评估USCTX调节肿瘤的能力
微环境并增强药物输送; (AIM 3)评估合并MECHTX和USCTX的能力
调节肿瘤微环境并增强药物输送; (目标4)演示临床前
化学治疗剂与MechTX和USCTX在生存研究中使用两个体内的疗效
HCC的模型。该项目的创新是:(a)将MECHTX用作一种新型的治疗策略
调节TME的肿瘤压力,微血管流量和刚度; (b)实施图像引导的USCTX
在临床超声扫描仪上,可为HCC提供可翻译的精度药物; (c)利用
MechTX和USCTX是一种调节TME以最大化化学疗法的新颖而创新的方法
结果; (d)将超级分辨率和非线性多普勒处理结合到空间和临时
超级溶解靶向TME的治疗的肿瘤的脉管系统。拟议的项目将
利用MechTX和USCTX的独特但协同的机制作为一种新颖的范式
TME对化学疗法的敏化,从而提供更好的治疗结果和整体生存率
HCC患者最初是其他恶性肿瘤和疾病的患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHALAKIS AVERKIOU其他文献
MICHALAKIS AVERKIOU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHALAKIS AVERKIOU', 18)}}的其他基金
A novel paradigm of sensitization of the tumor microenvironment with image-guided ultrasound cavitation and mechanotherapeutics for targeted HCC treatment
通过图像引导超声空化和机械治疗对肿瘤微环境进行敏化的新范例,用于靶向 HCC 治疗
- 批准号:
10516814 - 财政年份:2022
- 资助金额:
$ 61.2万 - 项目类别:
相似海外基金
A novel paradigm of sensitization of the tumor microenvironment with image-guided ultrasound cavitation and mechanotherapeutics for targeted HCC treatment
通过图像引导超声空化和机械治疗对肿瘤微环境进行敏化的新范例,用于靶向 HCC 治疗
- 批准号:
10516814 - 财政年份:2022
- 资助金额:
$ 61.2万 - 项目类别:
Pathological TNFR1 Expressing CD4+ T-cells are Critical for HF progression
病理性表达 TNFR1 的 CD4 T 细胞对于心力衰竭进展至关重要
- 批准号:
9768529 - 财政年份:2018
- 资助金额:
$ 61.2万 - 项目类别:
Real Time Visualization of Clot under X-Ray Using "Clot-Paint", a Novel Iodinated
使用新型碘化物“Clot-Paint”在 X 射线下实时观察血块
- 批准号:
7913705 - 财政年份:2010
- 资助金额:
$ 61.2万 - 项目类别:
Protein Tyrosine Dephosphorylation & signal Transduction
蛋白质酪氨酸去磷酸化
- 批准号:
7390872 - 财政年份:1991
- 资助金额:
$ 61.2万 - 项目类别:
Protein Tyrosine Dephosphorylation & signal Transduction
蛋白质酪氨酸去磷酸化
- 批准号:
7246633 - 财政年份:1991
- 资助金额:
$ 61.2万 - 项目类别: