A blind source separation approach for deconvolution of bulk transcriptional data leads to early detection of ATF cell-states in complex bacterial populations, in vitro and in vivo
用于批量转录数据去卷积的盲源分离方法可以在体外和体内早期检测复杂细菌群体中的 ATF 细胞状态
基本信息
- 批准号:10703357
- 负责人:
- 金额:$ 84.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-12 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsAntibiotic ResistanceAntibiotic TherapyAntibiotic susceptibilityAntibioticsAntimicrobial ResistanceBacteriaCellsClinicalCommunicable DiseasesComplexCustomDataData SetDetectionDevelopmentDiagnosticDiseaseDrug resistanceEarly DiagnosisEntropyEpigenetic ProcessExposure toFailureFrequenciesFutureGenesGenetic TranscriptionGoalsImmune systemImmunocompromised HostImmunotherapeutic agentIn VitroInfectionIntermediate resistanceLinkMachine LearningMaintenanceMalignant NeoplasmsMapsMeasurementMethodsMinorityModelingMusMutationPathway interactionsPatientsPharmaceutical PreparationsPhenotypePhysiciansPopulationPredispositionResistanceSamplingSerumSourceSpeedStressTechnologyTestingTimeTissuesTreatment FailureTumor TissueValidationWorkblindcancer cellcancer typeclinical diagnosticsdesigndiagnostic assaydiagnostic strategyexperienceexperimental studyimprovedin vivomachine learning algorithmmagnetic beadsnano-stringnanoporenovel diagnosticspressurepreventreconstitutionresistance mutationresponsesingle-cell RNA sequencingtargeted treatmenttechnology developmenttooltranscriptome sequencingtreatment strategy
项目摘要
SUMMARY – PROJECT 3
Transient bacterial cell-states including tolerance, persistence and hetero-resistance (HR) are harbingers of
antibiotic treatment failure (ATF) and enablers of antibiotic resistance. Importantly, they are missed in any
currently employed diagnostic assay or antibiotic susceptibility tests. Intriguingly, in the treatment of different
types of cancer, physicians are often confronted with similar treatment failure issues. It turns out that these
epigenetic cell-states create extended opportunities for high-level resistance mutations to emerge. Moreover,
due to the phenotype’s transience, they themselves can directly drive the re-emergence of the (susceptible)
population after drug pressure subsides. While these cell-states are increasingly recognized as drivers that sit
at the root of treatment failure, new strategies are emerging to specifically identify, track and target them. To
achieve such highly targeted treatment, approaches are developed that map out the composition of complex
cancer tissue, for instance through single cell RNA-Seq (scRNA-Seq), or computational deconvolution of bulk
RNA-Seq data. While, scRNA-Seq on bacteria remains technically challenging we found that by modifying
existing tools, specific bacterial cell-states can be identified in complex bacterial populations. However, the
capabilities of current tools are limited, and through the implementation of state-of-the-art machine learning
algorithms there is much room for improvement. Moreover, ATF cell-states are poorly characterized, making it
currently impossible to effectively define them. Herein, 3 aims are pursued to develop an approach that, based
on bulk RNA-Seq data, dissects a complex bacterial population into its separate cell-states, and calculates their
frequencies and MICs. In Aim 1 a large and diverse temporal RNA-Seq dataset is generated by following a wide
variety of strains and species while they are exposed to antibiotics and a subset of the population switches to an
ATF cell state. In Aim 2 a blind source separation algorithm is explored to design a state-of-the-art machine
learning tool that deconvolves bulk RNA-Seq data from a complex bacterial population into the cell-states and
their frequencies that make up the population. Moreover, by reconstituting each cell-state’s expression profile
we enable transcriptional entropy calculations and thereby cell-state specific MIC predictions. In Aim 3 the
approach is validated by retrospectively predicting the presence of ATF cell-states in patient samples. Finally,
the model’s applicability is extended to bulk dual RNA-Seq data from host and bacterium, and validated on
patient serum samples. This project therefore not only informs on how ATF cell-states develop and are
maintained in a population, but also creates a path towards the development of diagnostics that can detect them
in an active infection. Combined with the collateral sensitivities from Project 2 this could eventually enable linking
detection to targeted treatment decisions.
摘要 - 项目3
瞬态细菌细胞态,包括耐受性,持久性和异抗性(HR)
抗生素治疗衰竭(ATF)和抗生素耐药性的推动因素。重要的是,他们错过了任何
目前使用诊断测定或抗生素易感性测试。有趣的是,在治疗不同
癌症类型,医生通常面临类似的治疗失败问题。事实证明这些
表观遗传细胞态创造了扩展的机会,可以使高级抗性突变出现。而且,
由于表型的瞬间,它们本身可以直接推动(易感性)的重新出现
药物压力后的种群消退。虽然这些细胞状态越来越被认为是坐着的驱动程序
在治疗失败的根源上,正在出现新策略,以专门识别,跟踪和针对它们。到
达到这种高度针对性的治疗,开发了方法来绘制复杂的组成
癌组织,例如通过单细胞RNA-seq(SCRNA-SEQ)或大量计算反卷积
RNA-seq数据。而细菌上的scrna-seq在技术上仍然受到挑战,我们发现通过修改
现有的工具,特定细菌细胞园可以在复杂的细菌群体中鉴定。但是,
当前工具的功能是有限的,并且通过实施最先进的机器学习
算法有很大的改进空间。此外,ATF细胞园的特征很差,使其成为
目前无法有效定义它们。在此,追求3个目标来开发一种基于的方法
在散装RNA-seq数据上,将复杂的细菌种群剖析到其单独的细胞状态,并计算其
频率和麦克风。在目标1中
当它们暴露于抗生素时,各种菌株和物种的种群转换为一部分
ATF细胞状态。在AIM 2中,探索了盲目分离算法来设计最先进的机器
从复杂细菌群体中散布的RNA-seq数据的学习工具,
他们构成人口的频率。此外,通过重新建立每个单元状态的表达式配置文件
我们启用转录熵计算,从而启用细胞状态特定的MIC预测。在目标3中
通过回顾性预测患者样品中ATF细胞园的存在来验证方法。最后,
该模型的适用性扩展到宿主和细菌的批量双RNA-seq数据,并在
患者血清样品。因此,该项目不仅告知ATF细胞态如何发展和是
维持在人群中,但也为可以检测到诊断的发展创造了一条途径
在主动感染中。结合项目2的附带敏感性,这最终可以链接
检测有针对性的治疗决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tim van Opijnen其他文献
Tim van Opijnen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tim van Opijnen', 18)}}的其他基金
A priori adaptive evolution predictions for antibiotic resistance through genome-wide network analyses and machine learning
通过全基因组网络分析和机器学习对抗生素耐药性进行先验适应性进化预测
- 批准号:
10155396 - 财政年份:2020
- 资助金额:
$ 84.95万 - 项目类别:
Predicting species-wide virulence for a bacterial pathogen with a large pan-genome
预测具有大型泛基因组的细菌病原体的物种范围毒力
- 批准号:
9199847 - 财政年份:2016
- 资助金额:
$ 84.95万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Leveraging Molecular Technologies to Improve Diagnosis and Management of Pediatric Acute Respiratory Illness in Resource-Constrained Settings
利用分子技术改善资源有限环境中儿科急性呼吸系统疾病的诊断和管理
- 批准号:
10739603 - 财政年份:2023
- 资助金额:
$ 84.95万 - 项目类别:
Antibiotic tolerance: membraneless organelles and autolysin regulation
抗生素耐受:无膜细胞器和自溶素调节
- 批准号:
10333641 - 财政年份:2022
- 资助金额:
$ 84.95万 - 项目类别:
Impact of CRISPR-associated transposons on anti-phage immunity in Vibrio cholerae
CRISPR相关转座子对霍乱弧菌抗噬菌体免疫的影响
- 批准号:
10556364 - 财政年份:2022
- 资助金额:
$ 84.95万 - 项目类别:
Supplement: Development of a technology to certify engineered DNA molecules
补充:开发验证工程 DNA 分子的技术
- 批准号:
10732196 - 财政年份:2022
- 资助金额:
$ 84.95万 - 项目类别:
Impact of CRISPR-associated transposons on anti-phage immunity in Vibrio cholerae
CRISPR相关转座子对霍乱弧菌抗噬菌体免疫的影响
- 批准号:
10432311 - 财政年份:2022
- 资助金额:
$ 84.95万 - 项目类别: