Microelectrodes for Co-Localized Tunable Drug Delivery and Neural Recording
用于共定位可调谐药物输送和神经记录的微电极
基本信息
- 批准号:10701820
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-11-01 至 2026-10-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcuteAdrenal Cortex HormonesAffectAnimalsAnti-Inflammatory AgentsAreaAttenuatedAutopsyBiologicalBrainBypassCaringChemicalsChronicClinicalCommunicationComplexComputersDataDevicesDexamethasoneDiffuseDiseaseDrug Delivery SystemsEnvironmentGeometryHarvestImplantIndividualInflammationInflammatoryInflammatory ResponseInterventionKineticsLabelLifeLimb structureLocationMechanicsMethodsMicroelectrodesMotorMotor CortexMuscleNanotubesNervous SystemNervous System TraumaNeuronsNeurosciencesOccupationsPerformancePeripheralPharmaceutical PreparationsPhasePolymersProcessPropertyPsychological reinforcementPumpRoboticsSelf CareSignal TransductionSiliconSiteSocial InteractionSpecificitySpinal cord injuryStructureSucroseSurfaceSystemTechnologyTestingTherapeuticTimeTissuesTitaniaTranslationsTransportationUnited States Department of Veterans AffairsVeteransVolitionWild Type Mousearmastrogliosisbiological systemsbrain machine interfacebrain tissuecell typeclinical applicationclinical translationdisabilityelectric impedanceelectrical propertyexperienceexperimental groupflexibilityfunctional electrical stimulationfunctional independencefunctional restorationimprovedin vivoinflammatory markerinjuredinnovationinterfacialloved onesmechanical propertiesmetermotor behaviormotor deficitmotor disordernanocompositenanopolymernervous system disorderneuralneural implantneuroinflammationneurotransmissionnovelpharmacologicpreventresponsetechnology platform
项目摘要
Each year, thousands of Veterans experience neurologic injury or disease resulting in severe motor
dysfunction, with devastating consequences for the affected individual and their loved ones. Intracortical
brain-machine interfaces (iBMIs) offer a compelling solution for restoring volitional control of computer
cursors, robotic arms, and functional electrical stimulation-controlled limbs. However, iBMI functionality is
reliant upon our ability to detect neuronal signals at indwelling microelectrodes for a period of years to
decades. This requirement is challenged by the biological response to the implant, which impedes
communication between healthy neurons and the implanted microelectrodes. Successful iBMI clinical
translation, and the resulting gains in functional independence for users, hinges upon improving the quality
and stability of the biotic-abiotic interface.
The standard materials used for intracortical microelectrode devices are rigid materials, such as silicon,
which can cause chronic tissue damage that exacerbates the biological response. Some groups have developed
flexible polymer-based devices, though these usually require reinforcement to prevent buckling during
insertion. Local pharmacologic delivery can also be used to control the tissue response, though is typically
either short-lived as drug-loaded coatings are depleted, or requires complex and invasive fluidic systems.
Our approach combines advanced structural and microelectrode materials to provide a two-pronged
approach to attenuating the inflammatory tissue response without requiring complex fluidic delivery systems.
A mechanically-adaptive polymer nanocomposite (NC) provides a structural material that is sufficiently stiff
insert into the cortex, yet dramatically softens within minutes of insertion to minimize chronic differential
tissue strain. Highly-ordered, vertically-oriented titania nanotube arrays (TNAs) will perform both drug-
releasing intracortical microelectrode recording sites. TNAs are highly tunable materials that can efficiently
store pharmacologic agents that slowly diffuse into tissue over weeks to months with a release profile governed
by the nanotube geometries. Chemical doping processes enhance TNA conductivity to facilitate sensing
neuronal activity. We hypothesize that combining soft structural materials with sustained anti-inflammatory
drug delivery will lead to synergistic improvements in tissue response and long-term neural recording quality.
We will first investigate the relationship between anti-inflammatory release kinetics and the inflammatory
response. Devices comprise TNA microsegments integrated into the NC. Dexamethasone, a representative anti-
inflammatory corticosteroid, will be loaded into either the NC or into the TNAs to provide rapid and sustained
(>8 weeks) release profiles, respectively. Devices will be implanted into wild-type mice for up to 1, 2, 4 or 8
weeks. At each timepoint, local inflammatory markers in tissue will be evaluated for the two experimental
groups and for non-releasing and sucrose-releasing controls. This study will be used to evaluate the time course
of the inflammatory response to two different release profiles and assess in vivo DEX release from TNAs.
In the second study, we will take advantage of both the drug delivery and electrical properties of the TNAs.
We will fabricate NC-based neural probes with recording functionality using the TNAs as the recording sites at
which neural activity is detected. Probes will be implanted into the primary motor cortex of wild-type mice for
16 weeks. Throughout the implant period, neural activity, electrochemical impedance, and fine motor behavior
will be assessed, which will be followed by post-mortem quantification of cell types. We will evaluate the
contributions of soft materials, local pharmacologic intervention, and microelectrode recording site material.
We expect that sustained (>8 weeks) pharmacologic release directly from the recording sites will result in
substantial improvements in neural recording stability that will help to advance iBMI technology toward safe
clinical use with long-term reliability.
每年,成千上万的退伍军人遭受神经系统损伤或疾病,导致严重运动
功能障碍,对受影响的个人及其亲人造成毁灭性后果。心脏内
脑机界面(IBMI)提供了一种令人信服的解决方案,用于恢复计算机的自愿控制
光标,机器人臂和功能性电刺激控制的肢体。但是,IBMI功能是
依靠我们检测到留置微电极上神经元信号多年的能力
几十年。这种要求受到对植入物的生物反应的挑战,这阻碍了
健康神经元与植入的微电极之间的通信。成功的IBMI临床
翻译,以及用户的功能独立性增长,取决于提高质量
和生物生物界面的稳定性。
用于皮质内微电极设备的标准材料是刚性材料,例如硅,
这会导致慢性组织损伤加剧生物学反应。一些小组已经发展
柔性聚合物的设备,尽管这些设备通常需要加固以防止在
插入。局部药理输送也可以用于控制组织反应,尽管通常是
短暂的作为吸毒涂料的短暂寿命会耗尽,或者需要复杂而侵入性的流体系统。
我们的方法结合了先进的结构和微电极材料,以提供两管
减轻炎症组织反应的方法,而无需复杂的流体递送系统。
机械自适应的聚合物纳米复合材料(NC)提供了足够硬的结构材料
插入皮质中,但在插入后几分钟内会大大变软,以最大程度地减少慢性差异
组织应变。高度排序的,垂直面向的钛纳米管阵列(TNA)将执行这两种药物
释放皮质内微电极记录位点。 TNA是高度可调的材料,可以有效
储存药理学剂,这些药理学剂在数周到几个月内缓慢扩散到组织中,释放曲线受控制
由纳米管几何形状。化学掺杂过程提高了TNA电导率以促进感应
神经元活性。我们假设将软结构材料与持续的抗炎作用相结合
药物输送将导致组织反应和长期神经记录质量的协同改善。
我们将首先研究抗炎释放动力学与炎症之间的关系
回复。设备包含集成到NC中的TNA微膜片。地塞米松,代表性抗
炎性皮质类固醇将被加载到NC或TNA中,以提供快速持续的
(> 8周)分别释放轮廓。设备将植入最多1、2、4或8的野生型小鼠
几周。在每个时间点,将评估组织中局部炎症标志物的两个实验
组以及非释放和释放蔗糖的控制。这项研究将用于评估时间课程
对两个不同释放曲线的炎症反应,并评估从TNA中释放的体内DEX。
在第二项研究中,我们将利用TNA的药物输送和电性能。
我们将使用TNA作为记录功能作为记录位点的记录功能制造基于NC的神经探针
检测到哪些神经活动。探针将植入野生型小鼠的主要运动皮层中
16周。在整个植入期,神经活动,电化学阻抗和精细运动行为
将评估,随后是细胞类型的验尸定量。我们将评估
软材料,局部药理干预和微电极记录现场材料的贡献。
我们预计直接从记录站点释放(> 8周)的药理学释放将导致
神经记录稳定性的实质改善将有助于将IBMI技术推向安全
具有长期可靠性的临床用途。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allison Hess Dunning其他文献
Allison Hess Dunning的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allison Hess Dunning', 18)}}的其他基金
Microelectrodes for Co-Localized Tunable Drug Delivery and Neural Recording
用于共定位可调谐药物输送和神经记录的微电极
- 批准号:
10538836 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Flexible Multi-Sensory Mode Neural Devices for Neurochemical Control
用于神经化学控制的灵活多感官模式神经设备
- 批准号:
9313654 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Nanobiosensing Neural Probes for Traumatic Brain Injury Applications
用于创伤性脑损伤应用的纳米生物传感神经探针
- 批准号:
8486129 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Nanobiosensing Neural Probes for Traumatic Brain Injury Applications
用于创伤性脑损伤应用的纳米生物传感神经探针
- 批准号:
8984835 - 财政年份:2013
- 资助金额:
-- - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Achieving Sustained Control of Inflammation to Prevent Post-Traumatic Osteoarthritis (PTOA)
实现炎症的持续控制以预防创伤后骨关节炎 (PTOA)
- 批准号:
10641225 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Clinical Trial Readiness for Monitoring Muscle Inflammation in Duchenne Muscular Dystrophy
监测杜氏肌营养不良症肌肉炎症的临床试验准备
- 批准号:
10725465 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Novel Markers of Treatment Responsiveness for Pediatric Acute Asthma Exacerbations
小儿哮喘急性加重治疗反应性的新标志物
- 批准号:
10850297 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Novel Markers of Treatment Responsiveness for Pediatric Acute Asthma Exacerbations
小儿哮喘急性加重治疗反应性的新标志物
- 批准号:
10548194 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Immune and neuroendocrine mediators of sex-differences in pain following traumatic burn injury
创伤性烧伤后疼痛性别差异的免疫和神经内分泌介质
- 批准号:
10789498 - 财政年份:2022
- 资助金额:
-- - 项目类别: