Portable, robotic footwear for real-time control of foot-ground stiffness
用于实时控制足部地面刚度的便携式机器人鞋
基本信息
- 批准号:10678900
- 负责人:
- 金额:$ 22.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAgeAreaAwardBasic ScienceBehaviorBehavioralBiomechanicsBiomedical TechnologyCaringClinicalClinical ResearchDataDevelopmentDevicesDiagnosisDiagnosticEarly DiagnosisEquilibriumFeedbackFunctional disorderGaitGoalsHumanImpairmentIndividualKnowledgeLaboratoriesLeadLearningLocomotionMeasurementMeasuresMechanicsMedicalMethodologyMethodsMissionModelingMotionMotorMultiple SclerosisMuscleMusculoskeletal DiseasesNational Institute of Biomedical Imaging and BioengineeringNeurodegenerative DisordersNeurologicNeuromechanicsParkinson DiseaseParticipantPathologyPerformancePeripheralPilot ProjectsPublic HealthQuality of lifeReactionRehabilitation deviceRehabilitation therapyReportingResearchResearch PersonnelResistanceRoboticsSafetyScientific Advances and AccomplishmentsSeriesShoesSignal TransductionSpecific qualifier valueStrokeSurveysSystemTestingTimeTrainingUnited States National Institutes of HealthValidity and ReliabilityWalkingWeight-Bearing stateWorkage relatedbehavior changeclinical practicedesigndisabilitydynamic systemequilibration disorderevidence baseexperimental analysisfallsfootgait rehabilitationimprovedinnovationinsightinventionkinematicslight weightmotor behaviormotor learningneuralneuroadaptationneuroregulationnew technologynormal agingnovelportabilitypreventive interventionrecruitrehabilitation paradigmresponserobotic devicesensortooltransmission processtreadmillusabilitywearable device
项目摘要
PROJECT SUMMARY/ABSTRACT
Locomotor and balance dysfunction, which have a pernicious effect on independence and quality of life, are
caused by of a broad range of neural and musculoskeletal disorders as well as normal aging. While existing
treatment methods can counter some dysfunctions, some pathologies are persistent, such as weight-bearing
asymmetry and reduced adaptability. These pathologies are strongly defined by the dynamics of the physical
interaction between the feet and the ground. Thus, there is a critical need for novel tools to study, and ultimately
assist or re-train, how humans manage their physical interaction with the ground. The objective of the proposed
research is to enable new research into motor learning and human adaptation and provide an accessible,
effective vehicle for gait and balance rehabilitation through the development of portable robotic footwear which
can modify stiffness at the foot-ground interface in real-time. The significant contributions of this work include: 1)
creating the technical capability to change foot-ground interaction dynamics in both real-world and laboratory
settings, 2) enabling new methods of studying, assisting, and re-training human gait and balace, 3) significantly
advancing scientific knowledge by quantifying human adaptation to long-term changes in foot-ground interaction
dynamics, an understudied area of research, and 4) improving clinical practice by providing a portable tool to
make new treatments, preventative interventions, and early diagnoses widely accessible. The proposed research
is innovative because it will employ a transdisciplinary approach, applying concepts from neuromotor control,
biomechanics, and robotics, to develop a novel robotic device for research, assistance, and rehabilitation. This
proposal addresses the following specific aims:
Aim 1: Design, build and evaluate portable, robotic footwear that can actively modulate foot-ground
stiffness and measure the ground reaction forces of each foot independently.
We will design, fabricate, and validate robotic footwear with an active mechanism to modulate foot-ground
interface stiffness in real-time. The stiffness control system and onboard sensors will be rigorously evaluated for
validity and reliability with bench testing along with a pilot study with healthy participants performing whole-body
balance and walking tasks while wearing the device. Human testing will also evaluate the perceived safety,
comfort, and overall usability of the system.
Aim 2: Explore the effect of asymmetrically reducing foot-ground stiffness with the robotic footwear on
human motor behavior during standing and walking.
An additional pilot study will be conducted with healthy participants to assess how human motor behavior
changes in response to active foot-ground stiffness modulation. Results will inform the potential utility of the
robotic footwear for basic and clinical research applications and the development of models to understand human
neuromotor control of locomotion and balance.
项目摘要/摘要
运动和平衡功能障碍对独立性和生活质量产生有害作用,是
由广泛的神经和肌肉骨骼疾病以及正常衰老引起的。在存在的同时
治疗方法可以应对某些功能障碍,某些病理持续存在,例如体重
不对称和降低的适应性。这些病理是由物理动力的强烈定义
脚和地面之间的相互作用。因此,对于学习新颖的工具的迫切需要,最终
协助或重新训练,人类如何管理与地面的身体互动。提议的目标
研究是为了使运动学习和人类适应的新研究,并提供可访问的,
通过开发便携式机器人鞋类的步态和平衡康复的有效车辆
可以实时修改脚地面接口处的刚度。这项工作的重大贡献包括:1)
创建技术能力来改变现实世界和实验室中的脚地面互动动态
设置,2)启用新的研究,协助和重新训练人步态和Balace的新方法,3)显着
通过量化人类对长期脚地互动的长期变化的适应来推进科学知识
动态,研究的研究领域,以及4)通过提供便携式工具来改善临床实践
进行新的治疗方法,预防性干预措施以及早期诊断。拟议的研究
之所以创新,是因为它将采用跨学科方法,应用神经运动控制的概念,
生物力学和机器人技术开发一种新型的机器人装置,用于研究,援助和康复。这
提案解决以下具体目的:
目标1:设计,建造和评估便携式机器人鞋类,可以主动调节脚地面
刚度和测量每英尺的地面反作用力。
我们将设计,制造和验证具有主动机构的机器人鞋类,以调节脚地面
实时接口刚度。刚度控制系统和机上传感器将进行严格评估
台式测试的有效性和可靠性以及一项针对健康参与者进行全身的试验研究
佩戴设备时平衡和步行任务。人类测试还将评估所感知的安全性,
舒适性和系统的总体可用性。
AIM 2:探索不对称降低脚地面刚度的效果
站立和步行期间的人体运动行为。
将与健康参与者进行一项其他试点研究,以评估人类运动行为如何
响应于主动脚地面刚度调制的变化。结果将告知
用于基本和临床研究应用的机器人鞋类以及了解人类的模型的发展
神经运动和平衡的神经运动控制。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Minimum effort simulations of split-belt treadmill walking exploit asymmetry to reduce metabolic energy expenditure.
分体带跑步机行走的最小努力模拟利用不对称性来减少代谢能量消耗。
- DOI:10.1152/jn.00343.2022
- 发表时间:2023
- 期刊:
- 影响因子:2.5
- 作者:Price,Mark;Huber,MeghanE;Hoogkamer,Wouter
- 通讯作者:Hoogkamer,Wouter
Gait Adaptation to Asymmetric Hip Stiffness Applied by a Robotic Exoskeleton.
机器人外骨骼对不对称髋部僵硬的步态适应。
- DOI:10.1109/tnsre.2024.3354517
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Abdikadirova,Banu;Price,Mark;Jaramillo,JonazMoreno;Hoogkamer,Wouter;Huber,MeghanE
- 通讯作者:Huber,MeghanE
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wouter Hoogkamer其他文献
Wouter Hoogkamer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wouter Hoogkamer', 18)}}的其他基金
Identifying potential cortical mechanisms responsible for gait impairment in older adult fallers
识别导致老年跌倒者步态障碍的潜在皮质机制
- 批准号:
10707873 - 财政年份:2022
- 资助金额:
$ 22.9万 - 项目类别:
Portable, robotic footwear for real-time control of foot-ground stiffness
用于实时控制足部地面刚度的便携式机器人鞋
- 批准号:
10510157 - 财政年份:2022
- 资助金额:
$ 22.9万 - 项目类别:
Identifying potential cortical mechanisms responsible for gait impairment in older adult fallers
识别导致老年跌倒者步态障碍的潜在皮质机制
- 批准号:
10353856 - 财政年份:2022
- 资助金额:
$ 22.9万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 22.9万 - 项目类别:
The Influence of Habitual Physical Activity and Diet in the Development of Sarcopenia Among Older Adults With HIV
习惯性体力活动和饮食对老年艾滋病毒感染者肌肉减少症发展的影响
- 批准号:
10699259 - 财政年份:2023
- 资助金额:
$ 22.9万 - 项目类别:
Targeting Alcohol-Opioid Co-Use Among Young Adults Using a Novel MHealth Intervention
使用新型 MHealth 干预措施针对年轻人中酒精与阿片类药物的同时使用
- 批准号:
10456380 - 财政年份:2023
- 资助金额:
$ 22.9万 - 项目类别:
Modulation of Lifespan and Healthspan by Meiosis Genes
减数分裂基因对寿命和健康寿命的调节
- 批准号:
10724491 - 财政年份:2023
- 资助金额:
$ 22.9万 - 项目类别: