Portable, robotic footwear for real-time control of foot-ground stiffness

用于实时控制足部地面刚度的便携式机器人鞋

基本信息

  • 批准号:
    10678900
  • 负责人:
  • 金额:
    $ 22.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Locomotor and balance dysfunction, which have a pernicious effect on independence and quality of life, are caused by of a broad range of neural and musculoskeletal disorders as well as normal aging. While existing treatment methods can counter some dysfunctions, some pathologies are persistent, such as weight-bearing asymmetry and reduced adaptability. These pathologies are strongly defined by the dynamics of the physical interaction between the feet and the ground. Thus, there is a critical need for novel tools to study, and ultimately assist or re-train, how humans manage their physical interaction with the ground. The objective of the proposed research is to enable new research into motor learning and human adaptation and provide an accessible, effective vehicle for gait and balance rehabilitation through the development of portable robotic footwear which can modify stiffness at the foot-ground interface in real-time. The significant contributions of this work include: 1) creating the technical capability to change foot-ground interaction dynamics in both real-world and laboratory settings, 2) enabling new methods of studying, assisting, and re-training human gait and balace, 3) significantly advancing scientific knowledge by quantifying human adaptation to long-term changes in foot-ground interaction dynamics, an understudied area of research, and 4) improving clinical practice by providing a portable tool to make new treatments, preventative interventions, and early diagnoses widely accessible. The proposed research is innovative because it will employ a transdisciplinary approach, applying concepts from neuromotor control, biomechanics, and robotics, to develop a novel robotic device for research, assistance, and rehabilitation. This proposal addresses the following specific aims: Aim 1: Design, build and evaluate portable, robotic footwear that can actively modulate foot-ground stiffness and measure the ground reaction forces of each foot independently. We will design, fabricate, and validate robotic footwear with an active mechanism to modulate foot-ground interface stiffness in real-time. The stiffness control system and onboard sensors will be rigorously evaluated for validity and reliability with bench testing along with a pilot study with healthy participants performing whole-body balance and walking tasks while wearing the device. Human testing will also evaluate the perceived safety, comfort, and overall usability of the system. Aim 2: Explore the effect of asymmetrically reducing foot-ground stiffness with the robotic footwear on human motor behavior during standing and walking. An additional pilot study will be conducted with healthy participants to assess how human motor behavior changes in response to active foot-ground stiffness modulation. Results will inform the potential utility of the robotic footwear for basic and clinical research applications and the development of models to understand human neuromotor control of locomotion and balance.
项目概要/摘要 运动和平衡功能障碍对独立性和生活质量产生有害影响, 由广泛的神经和肌肉骨骼疾病以及正常衰老引起。虽然现有 治疗方法可以对抗一些功能障碍,一些病理是持续存在的,例如负重 不对称性和适应性降低。这些病理学是由身体的动态强烈定义的。 脚与地面的相互作用。因此,迫切需要新的研究工具,并最终 协助或重新训练人类如何管理与地面的身体互动。拟议的目标 研究的目的是促进运动学习和人类适应的新研究,并提供一种易于理解的、 通过开发便携式机器人鞋,成为步态和平衡康复的有效工具 可以实时修改足部与地面界面的刚度。这项工作的重大贡献包括:1) 创造改变现实世界和实验室中地面交互动态的技术能力 设置,2) 启用研究、辅助和再训练人类步态和平衡的新方法,3) 显着 通过量化人类对脚地相互作用的长期变化的适应来推进科学知识 动力学,一个尚未研究的研究领域,4)通过提供便携式工具来改善临床实践 使新的治疗方法、预防性干预措施和早期诊断能够广泛获得。拟议的研究 之所以具有创新性,是因为它将采用跨学科的方法,应用神经运动控制的概念, 生物力学和机器人技术,开发一种用于研究、援助和康复的新型机器人设备。这 提案涉及以下具体目标: 目标 1:设计、构建和评估能够主动调节脚部接地的便携式机器人鞋 刚度并独立测量每只脚的地面反作用力。 我们将设计、制造和验证具有主动机制来调节脚部接地的机器人鞋 实时界面刚度。刚度控制系统和机载传感器将经过严格评估 通过台架测试以及健康参与者进行全身试验的试点研究来确定有效性和可靠性 佩戴设备时的平衡和行走任务。人体测试还将评估感知的安全性, 舒适度和系统的整体可用性。 目标 2:探索机器人鞋不对称地降低足部地面刚度的效果 站立和行走时的人类运动行为。 还将对健康参与者进行一项额外的试点研究,以评估人类运动行为如何 响应主动足部地面刚度调制的变化。结果将告知该方法的潜在效用 用于基础和临床研究应用以及开发模型以了解人类的机器人鞋 运动和平衡的神经运动控制。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Minimum effort simulations of split-belt treadmill walking exploit asymmetry to reduce metabolic energy expenditure.
分体带跑步机行走的最小努力模拟利用不对称性来减少代谢能量消耗。
  • DOI:
    10.1152/jn.00343.2022
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Price,Mark;Huber,MeghanE;Hoogkamer,Wouter
  • 通讯作者:
    Hoogkamer,Wouter
Gait Adaptation to Asymmetric Hip Stiffness Applied by a Robotic Exoskeleton.
机器人外骨骼对不对称髋部僵硬的步态适应。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wouter Hoogkamer其他文献

Wouter Hoogkamer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wouter Hoogkamer', 18)}}的其他基金

Identifying potential cortical mechanisms responsible for gait impairment in older adult fallers
识别导致老年跌倒者步态障碍的潜在皮质机制
  • 批准号:
    10707873
  • 财政年份:
    2022
  • 资助金额:
    $ 22.9万
  • 项目类别:
Portable, robotic footwear for real-time control of foot-ground stiffness
用于实时控制足部地面刚度的便携式机器人鞋
  • 批准号:
    10510157
  • 财政年份:
    2022
  • 资助金额:
    $ 22.9万
  • 项目类别:
Identifying potential cortical mechanisms responsible for gait impairment in older adult fallers
识别导致老年跌倒者步态障碍的潜在皮质机制
  • 批准号:
    10353856
  • 财政年份:
    2022
  • 资助金额:
    $ 22.9万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
  • 批准号:
    10749539
  • 财政年份:
    2024
  • 资助金额:
    $ 22.9万
  • 项目类别:
RP5 MPT Study
RP5 MPT 研究
  • 批准号:
    10595905
  • 财政年份:
    2023
  • 资助金额:
    $ 22.9万
  • 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
  • 批准号:
    10642607
  • 财政年份:
    2023
  • 资助金额:
    $ 22.9万
  • 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
  • 批准号:
    10678789
  • 财政年份:
    2023
  • 资助金额:
    $ 22.9万
  • 项目类别:
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
  • 批准号:
    10663613
  • 财政年份:
    2023
  • 资助金额:
    $ 22.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了