Computational methods to elucidate the role of long non-coding RNA in Congenital Heart Disease
阐明长非编码RNA在先天性心脏病中作用的计算方法
基本信息
- 批准号:10680021
- 负责人:
- 金额:$ 3.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-18 至 2025-05-17
- 项目状态:未结题
- 来源:
- 关键词:AddressArchitectureAutomobile DrivingBiologicalBiological ProcessCandidate Disease GeneCardiacCardiovascular systemCellsChildClinicalCodeComputational TechniqueComputing MethodologiesCongenital AbnormalityCopy Number PolymorphismDataData AnalysesData SetDevelopmentDiseaseEtiologyFrequenciesFutureGenesGeneticGenetic DiseasesGenetic Predisposition to DiseaseGenetic ResearchGenetic VariationGenetic studyGenomeGenomicsGoalsHeartHeart AbnormalitiesHeart DiseasesHumanHuman GeneticsHuman GenomeInfant MortalityInformation TheoryInvestigationKnowledgeLengthMachine LearningMethodsMicro Array DataMissionMolecularMusNational Heart, Lung, and Blood InstituteNational Institute of Child Health and Human DevelopmentOpen Reading FramesOrthologous GenePathogenesisPathogenicityPathway AnalysisPatientsPatternPlayPopulationProbabilityProcessProteinsPublishingRNA-Protein InteractionRegulationResearchRoleSingle Nucleotide PolymorphismStructureTissuesTrainingTranscriptUntranslated RNAValidationVariantWorkaggregation databasealgorithmic methodologiesbasecardiogenesiscausal variantcell typecohortcongenital anomalycongenital heart disorderdevelopmental diseasedisease phenotypegene regulatory networkgenetic variantgenome sequencingglobal healthheart functionimproved outcomeinnovationlaboratory experimentmachine learning modelmalformationmouse modelnew therapeutic targetnovelsingle-cell RNA sequencingstemtime usetooltranscriptomics
项目摘要
PROJECT SUMMARY
Congenital Heart Disease (CHD) is the most common birth defect, yet the genetics of this disease are poorly
understood. The genomic mechanisms of this disease include distinct rare copy number variants (CNVs) and protein-
coding single nucleotide variants (SNVs). CHDs without other congenital anomalies, or isolated CHD, comprise 75%
of all CHDs. Genome sequencing (GS) studies of isolated CHD have focused primarily on protein-coding regions,
identifying disease-causal variants in only ~10-20% of subjects. This substantial knowledge gap suggests that other
etiologies, such as variation in the non-coding genome, may play a role. The non-coding genome is vast, constituting
98% of the genome, and encompasses multiple feature types, including the non-coding RNAs. There is growing
evidence for the role of long non-coding RNAs (lncRNAs) in disease, including developmental disorders of the heart.
As such, the long-term goal of this study is to elucidate lncRNA’s role in contributing to cardiac malformations. The
overarching objective of the proposed investigation is to develop computational methods to predict the function of
lncRNAs involved in heart development and predict the pathogenic impact of variants impacting these molecules
leading to heart maldevelopment. We will use GS data from the Gabriella Miller Kids First (GMKF) cohort to associate
variation in lncRNAs to CHD. We will then use single-cell RNA-sequencing (scRNA-Seq) data to identify lncRNAs
expressed in relevant cell types during crucial stages of human cardiogenesis. Our central hypothesis is that variants
in lncRNAs are a probable cause in unsolved CHD cases and that by using scRNA-seq data, we can prioritize
candidates for future functional validation. We propose the following specific aims to address this challenge. In Aim
1, we will develop a machine learning (ML) tool to annotate lncRNA variants in our CHD cohort. There is a lack of
tools to interpret the biological implications of CNVs and SNVs impacting lncRNAs. Our preliminary data effectively
annotated clinically validated CNVs associated with isolated CHD by applying ML. We will extend our methods to
consider CNVs and SNVs impacting lncRNAs and those impacting protein-coding genes. Aim 2 will apply network
analysis on scRNA-Seq data to elucidate lncRNA’s role in heart development. We will associate lncRNA-protein causal
relationships with general heart development by using inference from the gene regulatory networks (GRN). GRN
will be built from single-cell transcriptomics data to contribute to the discovery of lncRNAs involved in heart
development. This work is innovative as we will be the first to construct an ML tool for cardiac-specific lncRNA
variant annotation and clarify the role that lncRNAs may play in the development of CHD. Completing this project
will achieve the NHLBI’s mission of creating computational techniques for understanding the mechanisms
underlying the regulation of normal heart formation and NICHD’s objective of comprehending the genetic basis of
heart defects. In addition, the research is significant since it may lead to the discovery of novel genetic etiologies in
CHD and the identification of novel therapeutic targets.
项目概要
先天性心脏病(CHD)是最常见的出生缺陷,但这种疾病的遗传因素很差
这种疾病的基因组机制包括独特的罕见拷贝数变异(CNV)和蛋白质。
编码单核苷酸变异(SNV)的无其他先天性异常的CHD,或孤立的CHD,占75%。
所有 CHD 的基因组测序 (GS) 研究主要集中在蛋白质编码区域,
这种巨大的知识差距表明,仅约 10-20% 的受试者能够识别出致病变异。
病因学,例如非编码基因组的变异,可能发挥了作用。
98% 的基因组,包含多种特征类型,包括非编码 RNA。
长链非编码 RNA (lncRNA) 在疾病(包括心脏发育障碍)中作用的证据。
因此,这项研究的长期目标是阐明 lncRNA 在导致心脏畸形中的作用。
拟议调查的总体目标是开发计算方法来预测函数
lncRNA 参与心脏发育并预测影响这些分子的变异的致病影响
我们将使用 Gabriella Miller Kids First (GMKF) 队列的 GS 数据进行关联。
然后,我们将使用单细胞 RNA 测序 (scRNA-Seq) 数据来识别 lncRNA。
我们的中心假设是变异在人类心脏发生的关键阶段的相关细胞类型中表达。
lncRNA 是未解决的 CHD 病例的一个可能原因,通过使用 scRNA-seq 数据,我们可以优先考虑
我们提出了以下具体目标来应对这一挑战。
1,我们将开发一种机器学习(ML)工具来注释我们的CHD队列中缺乏的lncRNA变异。
有效解释 CNV 和 SNV 影响 lncRNA 的生物学意义的工具。
通过应用 ML 注释经临床验证的与孤立性 CHD 相关的 CNV。
考虑影响 lncRNA 的 CNV 和 SNV 以及影响蛋白质编码基因的 CNV 和 SNV 将应用网络。
分析 scRNA-Seq 数据以阐明 lncRNA 在心脏发育中的作用,我们将把 lncRNA 与蛋白质因果关系联系起来。
通过使用基因调控网络(GRN)的推断来推断与一般心脏发育的关系。
将根据单细胞转录组数据构建,有助于发现与心脏相关的 lncRNA
这项工作具有创新性,因为我们将成为第一个为心脏特异性 lncRNA 构建 ML 工具的人。
变异注释并阐明 lncRNA 在 CHD 发展中可能发挥的作用。
将实现 NHLBI 的使命:创建计算技术来理解机制
正常心脏形成的调节以及 NICHD 的目标是了解心脏形成的遗传基础
此外,这项研究意义重大,因为它可能导致新的遗传病因的发现。
CHD 和新治疗靶点的识别。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacqueline Stephany Penaloza其他文献
Jacqueline Stephany Penaloza的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidating the Role of YAP and TAZ in the Aging Human Ovary
阐明 YAP 和 TAZ 在人类卵巢衰老中的作用
- 批准号:
10722368 - 财政年份:2023
- 资助金额:
$ 3.93万 - 项目类别:
Identifying epigenetic factors in control of epidermal stem cell longevity in the adult skin
识别控制成人皮肤表皮干细胞寿命的表观遗传因素
- 批准号:
10723212 - 财政年份:2023
- 资助金额:
$ 3.93万 - 项目类别:
Genetic Architecture of Aging-Related TDP-43 and Mixed Pathology Dementia
衰老相关 TDP-43 和混合病理痴呆的遗传结构
- 批准号:
10658215 - 财政年份:2023
- 资助金额:
$ 3.93万 - 项目类别:
Genomic and environmental drivers of HCC in Non-Hispanic Blacks: Nature and nurture
非西班牙裔黑人 HCC 的基因组和环境驱动因素:先天和后天
- 批准号:
10856546 - 财政年份:2023
- 资助金额:
$ 3.93万 - 项目类别:
Project 2: Impact of H1/H2 haplotypes on cellular disease-associated phenotypes driven by FTD-causing MAPT mutations
项目 2:H1/H2 单倍型对 FTD 引起的 MAPT 突变驱动的细胞疾病相关表型的影响
- 批准号:
10834336 - 财政年份:2023
- 资助金额:
$ 3.93万 - 项目类别: