Dissecting gene regulation of stem cell quiescence in Ciona
剖析玻璃海鞘干细胞静止的基因调控
基本信息
- 批准号:10679206
- 负责人:
- 金额:$ 7.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdolescentAdultApoptosisBehaviorBiological AssayBiological MetamorphosisBrainBypassC-terminalCRISPR/Cas technologyCell Differentiation processCell LineageCell ProliferationCellsCephalicChordataCuesDataDevelopmentDevelopmental BiologyDiseaseEmbryoEquilibriumFluorescence MicroscopyFoundationsFutureGene Expression RegulationGenesGeneticGenetic TranscriptionGillsGoalsHomeoboxHomologous GeneHumanIndividualInvertebratesInvestigationKnock-outLarvaLifeLinkMaintenanceMammalsMarine InvertebratesMediatingModelingMolecularMotor NeuronsMuscleNatural regenerationNeckNervous SystemNeuronal DifferentiationNeuronsOrganOrganismOutcomePathway interactionsPatternPharyngeal structurePlayPopulationProcessProliferatingRNA Polymerase IIRegenerative capacityRegulationRegulator GenesRegulatory ElementReporterRoleSignal PathwaySignal TransductionSisterSpecific qualifier valueStereotypingStructureTimeTissuesTranscription ElongationTranscriptional RegulationUrochordataVertebratesWorkantagonistascidianbonebrain cellcell behaviorcholinergic neuronextracellulargenetic architecturegenome editingin vivo Modelinnovationknockout genemutantnerve stem cellnervous system developmentneurodevelopmentnew technologynovelpreventprogenitorreceptorregeneration potentialregenerativeregenerative biologyregenerative therapyrepairedresponsespatiotemporalstem cell nichestem cell populationstem cells
项目摘要
PROJECT SUMMARY
During development, the formation of heterogenous tissues, organs, and cellular networks depends on a careful
balance between cellular proliferation, quiescence, and differentiation. Once cells have fully differentiated, their
ability to proliferate or differentiate are most often lost, and so most adult cells are generally incapable of self-
regeneration or repair. The development of regenerative therapies will require harnessing this latent ability, but
first we need a deeper understanding of the processes that control it. Thus, understanding the genetic
architecture underlying quiescent progenitor behavior is key to developing and applying emerging therapies with
new technologies such as cellular reprogramming or genome editing. The objective of this proposal is to
characterize the regulation and functions of potentially important genes controlling quiescence, differentiation,
and proliferation in marine invertebrate and chordate Ciona robusta. Ciona are among our closest invertebrate
relatives, and so during development we share similar structural and molecular features. However, Ciona
undergo a dramatic conversion from larval to adult forms called metamorphosis, when the larval body plan
degenerates and is replaced by quiescent progenitors which must bypass programmed cell death to reemerge
post-metamorphosis and generate the adult body plan. One such cell population are larval neural progenitors
called Neck cells which are established in a discrete stem cell niche-like compartment. The signaling pathways
and genetic components that direct Neck entry, maintenance, and exit from quiescence remain uncharacterized.
I propose using the Neck cell population as a model to identify unique mechanisms regulating quiescence and
regeneration that can be harnessed for future therapies. The rationale for this proposal is that, by exploiting the
tractability of Ciona, the accessibility of these Neck cells, and their stereotyped cellular behaviors, I can closely
examine regulatory control of Neck cell quiescence, proliferation, and differentiation. I will do so by pursuing two
specific aims. 1) To investigate the control of Neck quiescence and proliferation during the larval stage by the
integration of extracellular cues and intracellular transcriptional control. 2) To investigate a novel mechanism for
transcriptional priming and delay of Neck cell differentiation. I will pursue these aims using an innovative
approach that combines cell lineage-specific, CRISPR/Cas9-based somatic gene knockouts and fluorescence
microscopy. The expected outcomes of the proposed work include identifying previously unrecognized functions
for conserved but poorly studied genes in neurodevelopment and how their spatiotemporal regulation can be
instructive for the precise timing of quiescence. This will establish a foundation for a targeted investigation of
neurodevelopmental processes underlying a wide range of human disorders.
项目概要
在发育过程中,异质组织、器官和细胞网络的形成取决于仔细的
细胞增殖、静止和分化之间的平衡。一旦细胞完全分化,它们的
增殖或分化的能力通常会丧失,因此大多数成体细胞通常无法自我增殖或分化。
再生或修复。再生疗法的发展需要利用这种潜在能力,但是
首先,我们需要更深入地了解控制它的过程。因此,了解遗传
静态祖细胞行为的基础结构是开发和应用新兴疗法的关键
新技术,例如细胞重编程或基因组编辑。该提案的目的是
表征控制静止、分化的潜在重要基因的调控和功能,
以及海洋无脊椎动物和脊索动物海鞘的增殖。 Ciona 是与我们最亲近的无脊椎动物之一
亲戚,因此在发育过程中我们具有相似的结构和分子特征。然而,西奥娜
当幼虫身体规划时,经历从幼虫到成虫形式的戏剧性转变,称为变态
退化并被静止的祖细胞取代,这些祖细胞必须绕过程序性细胞死亡才能重新出现
变态后并生成成人身体计划。其中一种细胞群是幼虫神经祖细胞
称为颈部细胞,它们建立在离散的干细胞生态位样区室中。信号通路
指导颈部进入、维持和退出静止状态的遗传成分仍然未知。
我建议使用颈部细胞群作为模型来识别调节静止和
可用于未来治疗的再生。该提案的基本原理是,通过利用
Ciona 的易处理性、这些颈部细胞的可及性以及它们的刻板细胞行为,我可以密切关注
检查颈细胞静止、增殖和分化的调节控制。我将通过追求两个来做到这一点
具体目标。 1) 研究幼虫阶段颈部静止和增殖的控制
细胞外线索和细胞内转录控制的整合。 2)研究新机制
颈细胞分化的转录启动和延迟。我将通过创新的方式来实现这些目标
结合细胞谱系特异性、基于 CRISPR/Cas9 的体细胞基因敲除和荧光的方法
显微镜。拟议工作的预期成果包括确定以前未认识到的功能
神经发育中保守但研究很少的基因以及它们的时空调节如何
对于精确的静止时间具有指导意义。这将为有针对性的调查奠定基础
多种人类疾病背后的神经发育过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eduardo D. Gigante其他文献
Eduardo D. Gigante的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eduardo D. Gigante', 18)}}的其他基金
Defining the relationship of ciliary Arl13b and Smoothened
定义睫状 Arl13b 和 Smoothened 的关系
- 批准号:
9760854 - 财政年份:2019
- 资助金额:
$ 7.2万 - 项目类别:
Defining the relationship of ciliary Arl13b and Smoothened
定义睫状 Arl13b 和 Smoothened 的关系
- 批准号:
9977000 - 财政年份:2019
- 资助金额:
$ 7.2万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Combined bromodomain and CDK4/6 inhibition in NUT Carcinoma and other solid tumors
溴结构域和 CDK4/6 联合抑制 NUT 癌和其他实体瘤
- 批准号:
10577265 - 财政年份:2023
- 资助金额:
$ 7.2万 - 项目类别:
Mitochondrial Dysfunction underlies treatment related hepatotoxicity in Hispanics with acute lymphoblastic leukemia
线粒体功能障碍是西班牙裔急性淋巴细胞白血病治疗相关肝毒性的基础
- 批准号:
10675403 - 财政年份:2023
- 资助金额:
$ 7.2万 - 项目类别:
Novel Signaling Mechanism in Chamber-Specific Postnatal Heart Growth
腔室特异性产后心脏生长的新型信号机制
- 批准号:
10583889 - 财政年份:2023
- 资助金额:
$ 7.2万 - 项目类别:
Early Detection and Monitoring of Osteonecrosis of the Femoral Head
股骨头坏死的早期发现和监测
- 批准号:
10562069 - 财政年份:2023
- 资助金额:
$ 7.2万 - 项目类别:
Pericyte function in anesthetic-induced vasodilation and developmental neurotoxicity
麻醉诱导的血管舒张和发育神经毒性中的周细胞功能
- 批准号:
10811278 - 财政年份:2023
- 资助金额:
$ 7.2万 - 项目类别: