NO signaling by a Soluble Guanylyl Cyclase -Thioredoxin transnitrosation complex
可溶性鸟苷酸环化酶-硫氧还蛋白转亚硝基复合物的 NO 信号传导
基本信息
- 批准号:10680605
- 负责人:
- 金额:$ 43.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAdenovirusesAffectAngiotensin IIApoptosisBindingBiochemicalBioinformaticsBiological AssayBlood VesselsCRISPR/Cas technologyCalciumCardiacCardiac MyocytesCardiovascular systemCell LineCell SeparationCell physiologyCellsCo-ImmunoprecipitationsCompensationComplexConsensusCyclic GMPCysteineEnvironmentEquilibriumFunctional disorderFundingGuanosine TriphosphateHeart HypertrophyHeart failureHomeostasisHypertensionImpairmentInvestigationKnock-inKnock-in MouseLigationMass Spectrum AnalysisMeasuresMediatorMetabolic PathwayModelingModificationMusMutation AnalysisNitric OxideNitrosationOLFM4 geneOxidation-ReductionOxidative StressOxidative Stress InductionPathologicPathway interactionsPeptidesPhysiologicalPolymersPost-Translational Protein ProcessingPropertyProteinsProteomicsRegulationRoleSKIL geneSignal PathwaySignal TransductionSignaling MoleculeSiteSkeletonSmooth MuscleSoluble Guanylate CyclaseSpecificityStressSulfhydryl CompoundsSystemTXN geneVasodilationWild Type Mouseangiogenesisblood pressure regulationcGMP productioncardioprotectiondesensitizationheme ain vivomouse modelnoveloxidationpolymerizationprotective effectprotective pathwayprotein functionprotein protein interactionresponsestress reduction
项目摘要
PROJECT SUMMARY
Nitric oxide (NO) is an important signaling molecule that regulates diverse functions relevant to vascular
function, apoptosis and angiogenesis. NO is best known for its ability to stimulate soluble guanylyl
cyclase (now called GC1) to produce cGMP and stimulate its downstream signaling pathways.
However, NO can also covalently modify cysteines (Cys) via S-nitrosation or S-nitrosylation (addition
of a NO moiety to the cysteine of a protein, SNO). Although this reversible post-translational
modification is increasingly recognized as an important regulatory mechanism of protein function,
dynamic regulation of protein nitrosation specificity is poorly understood. Our most recent investigations
reveal that GC1 has a transnitrosylase activity, i.e. GC1 has the ability to directly transfer SNO to
specific targets by protein-protein interaction (transnitrosation). This transnitrosation activity does not
require the cGMP forming activity of GC1 and can be accomplished by a single subunit of GC1
(formation of cGMP requires 2 subunits). Furthermore, we showed that one transnitrosation target of
GC1 is oxidized thioredoxin 1 (oTrx1), a thiol-redox protein that modulates cellular S-nitrosation. In fact,
oxidative/nitrosative conditions appear to favor the GC1-Trx1 complex. Using advanced proteomics
approaches, we recently identified the Cys in GC1 and Trx1 that are involved in the SNO transfer in a
purified system, and the Cys of proteins targeted by the GC1/Trx1 transnitrosation cascade in smooth
muscle and cardiac cells. Our hypothesis is that the function of GC1 transnitrosation activity is an
adaptive response to oxidative stress and potentially compensates for the dysfunction of the canonical
NO-GC1-cGMP pathway that occurs in oxidative conditions. To explore this provocative hypothesis,
we propose to conduct mutational analysis of the Cys we have identified to characterize the mechanism
of transnitrosation in smooth muscle and cardiac cells. By comparing the targets of GC1, Trx1 and both
we will determine the mechanisms underlying target specificity. We will determine how GC1/Trx1
transnitrosation of specific targets affects their cellular function. For this, we will use cell lines and
primary cells isolated from a novel mouse knock-in (KI) of a Cys of GC1 involved in transnitrosation.
To determine the physiological relevance of GC1- and GC1/Trx1-transnitrosation in the cardiovascular
system and the adaptive response to stress, we will use the Cys KI mouse model and inhibitory peptides
that disrupt the GC1/Trx1 transnitrosating complex under Angiotensin II-induced oxidative stress. This
project could lead to the discovery of novel cardiovascular protective pathways driven by specific S-
nitrosation.
项目摘要
一氧化氮(NO)是一个重要的信号分子,可调节与血管相关的多种功能
功能,凋亡和血管生成。 NO以其刺激可溶性Guanylyl的能力而闻名
循环酶(现在称为GC1)产生CGMP并刺激其下游信号通路。
但是,也不能通过S-硝化或S-硝基化来共价修改半胱氨酸(Cys)(添加
蛋白质的半胱氨酸的无部分,sno)。虽然这种可逆的翻译后
修饰越来越被认为是蛋白质功能的重要调节机制,
蛋白质亚硝化特异性的动态调节知识不足。我们最近的调查
揭示GC1具有跨硝基酶活性,即GC1具有将SNO直接传递到的能力
蛋白质 - 蛋白质相互作用(跨硝化)的特定靶标。这种转让活动没有
需要GC1的CGMP形成活性,可以通过GC1的单个亚基来完成
(CGMP的形成需要2个亚基)。此外,我们证明了一个经过的跨硝化目标
GC1被氧化硫氧还蛋白1(OTRX1),一种调节细胞S-硝化化的硫代氧蛋白。实际上,
氧化/亚硝化条件似乎有利于GC1-TRX1复合物。使用高级蛋白质组学
方法是,我们最近确定了与SnO转移有关的GC1和TRX1中的CY
纯化的系统,以及由GC1/TRX1转硝化级联对靶向的蛋白质的CY
肌肉和心脏细胞。我们的假设是GC1转硝化活性的功能是
对氧化应激的自适应反应,并有可能补偿规范的功能障碍
在氧化条件下发生的NO-GC1-CGMP途径。探索这个挑衅的假设,
我们建议对我们确定的CYS进行突变分析以表征机制
平滑肌和心脏细胞中的跨硝化作用。通过比较gc1,trx1的目标
我们将确定目标特异性的基础机制。我们将确定GC1/TRX1如何
特定靶标的跨硝化影响其细胞功能。为此,我们将使用单元线和
从涉及转硝化的GC1的新型小鼠敲入(Ki)中分离出来的原代细胞。
确定心血管中GC1-和GC1/TRX1-TRANSNINTROSATION的生理相关性
系统和对压力的自适应反应,我们将使用Cys Ki小鼠模型和抑制性肽
这破坏了血管紧张素II诱导的氧化应激下的GC1/TRX1转硝化复合物。这
项目可能导致发现由特定S-驱动的新型心血管保护途径
硝化。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inhibitory Peptide of Soluble Guanylyl Cyclase/Trx1 Interface Blunts the Dual Redox Signaling Functions of the Complex.
- DOI:10.3390/antiox12040906
- 发表时间:2023-04-10
- 期刊:
- 影响因子:7
- 作者:Cui, Chuanlong;Shu, Ping;Sadeghian, Tanaz;Younis, Waqas;Li, Hong;Beuve, Annie
- 通讯作者:Beuve, Annie
Proteomic cellular signatures of kinase inhibitor-induced cardiotoxicity.
- DOI:10.1038/s41597-021-01114-3
- 发表时间:2022-01-20
- 期刊:
- 影响因子:9.8
- 作者:Xiong Y;Liu T;Chen T;Hansen J;Hu B;Chen Y;Jayaraman G;Schürer S;Vidovic D;Goldfarb J;Sobie EA;Birtwistle MR;Iyengar R;Li H;Azeloglu EU
- 通讯作者:Azeloglu EU
Selective cysteines oxidation in soluble guanylyl cyclase catalytic domain is involved in NO activation.
- DOI:10.1016/j.freeradbiomed.2020.11.001
- 发表时间:2021-01
- 期刊:
- 影响因子:7.4
- 作者:Alapa M;Cui C;Shu P;Li H;Kholodovych V;Beuve A
- 通讯作者:Beuve A
Soluble guanylyl cyclase mediates noncanonical nitric oxide signaling by nitrosothiol transfer under oxidative stress.
- DOI:10.1016/j.redox.2022.102425
- 发表时间:2022-09
- 期刊:
- 影响因子:11.4
- 作者:Cui, Chuanlong;Wu, Changgong;Shu, Ping;Liu, Tong;Li, Hong;Beuve, Annie
- 通讯作者:Beuve, Annie
A primer for measuring cGMP signaling and cGMP-mediated vascular relaxation.
- DOI:10.1016/j.niox.2021.09.008
- 发表时间:2021-12-01
- 期刊:
- 影响因子:3.9
- 作者:Straub, Adam C.;Beuve, Annie
- 通讯作者:Beuve, Annie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANNIE V BEUVE其他文献
ANNIE V BEUVE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANNIE V BEUVE', 18)}}的其他基金
NO signaling by a Soluble Guanylyl Cyclase-Thioredoxin transnitrosation complex
可溶性鸟苷酸环化酶-硫氧还蛋白转亚硝基复合物的 NO 信号转导
- 批准号:
8894270 - 财政年份:2015
- 资助金额:
$ 43.11万 - 项目类别:
NO signaling by a Soluble Guanylyl Cyclase -Thioredoxin transnitrosation complex
可溶性鸟苷酸环化酶-硫氧还蛋白转亚硝基复合物的 NO 信号传导
- 批准号:
10475129 - 财政年份:2015
- 资助金额:
$ 43.11万 - 项目类别:
NO signaling by a Soluble Guanylyl Cyclase -Thioredoxin transnitrosation complex
可溶性鸟苷酸环化酶-硫氧还蛋白转亚硝基复合物的 NO 信号传导
- 批准号:
10580267 - 财政年份:2015
- 资助金额:
$ 43.11万 - 项目类别:
NO signaling by a Soluble Guanylyl Cyclase -Thioredoxin transnitrosation complex
可溶性鸟苷酸环化酶-硫氧还蛋白转亚硝基复合物的 NO 信号传导
- 批准号:
10260574 - 财政年份:2015
- 资助金额:
$ 43.11万 - 项目类别:
NO signaling by a Soluble Guanylyl Cyclase -Thioredoxin transnitrosation complex
可溶性鸟苷酸环化酶-硫氧还蛋白转亚硝基复合物的 NO 信号传导
- 批准号:
10119473 - 财政年份:2015
- 资助金额:
$ 43.11万 - 项目类别:
S-nitrosylation of soluble guanylyl cyclase: potential role in nitrate tolerance
可溶性鸟苷酸环化酶的 S-亚硝基化:在硝酸盐耐受性中的潜在作用
- 批准号:
7620065 - 财政年份:2008
- 资助金额:
$ 43.11万 - 项目类别:
S-nitrosylation of soluble guanylyl cyclase: potential role in nitrate tolerance
可溶性鸟苷酸环化酶的 S-亚硝基化:在硝酸盐耐受性中的潜在作用
- 批准号:
7472094 - 财政年份:2008
- 资助金额:
$ 43.11万 - 项目类别:
Regulation of Soluble guanylyl cyclase, the NO-receptor
可溶性鸟苷酸环化酶(NO 受体)的调节
- 批准号:
7217328 - 财政年份:2003
- 资助金额:
$ 43.11万 - 项目类别:
Regulation of Soluble Guanylyl Cyclase, the NO-Receptor
可溶性鸟苷酸环化酶(NO 受体)的调节
- 批准号:
8636026 - 财政年份:2003
- 资助金额:
$ 43.11万 - 项目类别:
Regulation of Soluble Guanylyl Cyclase, the NO-Receptor
可溶性鸟苷酸环化酶(NO 受体)的调节
- 批准号:
7596175 - 财政年份:2003
- 资助金额:
$ 43.11万 - 项目类别:
相似国自然基金
肠道菌群对溶瘤腺病毒免疫治疗的影响与机制及综合治疗策略的研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
DENND2D的诱导表达对非小细胞肺癌细胞恶性表型影响及其作用机制研究
- 批准号:81802284
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
血清4型禽腺病毒3'端135-bp自然缺失影响病毒致病性的研究
- 批准号:31702268
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
人B组腺病毒纤毛蛋白与DSG2受体亲和力的差异及其对病毒致病力的影响研究
- 批准号:31570163
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
纤毛杆影响嵌合型腺病毒感染T淋巴细胞效率的机制研究
- 批准号:31400149
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Characterization of Adenine Nucleotide Translocase (ANT) and Actin-Interacting Protein 1 (AIP1) as Protectors Against Cigarette Smoke
腺嘌呤核苷酸转位酶 (ANT) 和肌动蛋白相互作用蛋白 1 (AIP1) 作为香烟烟雾保护剂的表征
- 批准号:
9917578 - 财政年份:2019
- 资助金额:
$ 43.11万 - 项目类别:
Deciphering how a human mutation in leiomodin-3 leads to muscle disease
解读人类 leiomodin-3 突变如何导致肌肉疾病
- 批准号:
10000762 - 财政年份:2019
- 资助金额:
$ 43.11万 - 项目类别:
Deciphering how a human mutation in leiomodin-3 leads to muscle disease
解读人类 leiomodin-3 突变如何导致肌肉疾病
- 批准号:
10228711 - 财政年份:2019
- 资助金额:
$ 43.11万 - 项目类别:
NO signaling by a Soluble Guanylyl Cyclase -Thioredoxin transnitrosation complex
可溶性鸟苷酸环化酶-硫氧还蛋白转亚硝基复合物的 NO 信号传导
- 批准号:
10475129 - 财政年份:2015
- 资助金额:
$ 43.11万 - 项目类别:
NO signaling by a Soluble Guanylyl Cyclase -Thioredoxin transnitrosation complex
可溶性鸟苷酸环化酶-硫氧还蛋白转亚硝基复合物的 NO 信号传导
- 批准号:
10580267 - 财政年份:2015
- 资助金额:
$ 43.11万 - 项目类别: