Mechanism of Meiotic Recombination

减数分裂重组机制

基本信息

项目摘要

Meiotic double-strand DNA break (DSB) repair by homologous recombination occurs via multiple processes defined by distinct decisions points. One important decision involves partner choice, between recombining with the sister chromatid (the dominant repair partner during mitosis) or with the homolog (the homologous chromosome of different parental origin, the preferred partner during meiosis). Another important decision involves recombination pathway choice, between producing crossovers, where flanking chromosome sequences are exchanged, or noncrossovers. A signature contribution of our group was the demonstration that crossover and noncrossover recombination proceed via different mechanisms that diverge after initial stages of strand invasion, and that feature different biochemical activities and genetic requirements. Work during previous review periods had shown that the conserved Sgs1-Top3-Rmi1 helicase-topoisomerase complex (STR) is responsible for partitioning early recombination events between noncrossover and crossover pathways. Sgs1-Top3-Rmi1 is the yeast homolog of the mammalian BLM helicase-Top3alpha-BLAP75 complex, implicated in cancer avoidance and recombination control in humans. We showed that all three members of the yeast complex are essential for normal recombination partner choice and for population of regulated meiotic crossover and noncrossover recombination pathways. Based on these findings, we hypothesized that STR, by promoting frequent disassembly of early strand invasion intermediates, acts as a chaperone for early recombination intermediates. We hypothesized that these repeated cycles of strand invasion and disassembly would result in template switching, which in turn would lead to recombinants with mosaic parental strand contributions. This hypothesis has now been confirmed by high-throughput sequencing of recombinants that occur in a highly polymorphic test interval; more than 2/3 of recombinants display clear evidence for template switching, multiple strand invasions, or both. In addition, we uncovered evidence for activities specific to the crossover pathway, including branch migration (2/3 of crossovers) and exonucleolytic gap-formation (1/3 of crossovers). Current work is aimed at determining the proteins responsible for these activities. Other work is aimed at confirming branch migration by mapping the location of Holliday junctions in recombination using a novel method we have developed to specifically purify Holliday junction-containing intermediates. Finally, we are studying how chromosome structure, specifically the meiotic chromosome axis, contributes to the regulation of recombination. A meiosis-specific subset of chromosome axis components, the Hop1 and Red1 proteins, are important for meiotic DSB formation and partner choice, and are enriched in some regions of the genome relative to others. Using a novel method to recruit axis proteins to regions that are normally depleted of these proteins, we have shown that high concentrations of the Hop1 protein are necessary and sufficient for meiotic DSB formation, but the recombination events initiated by these DSBs do not follow canonical meiotic recombination pathways. We are currently determining the mechanism by which Hop1 promotes DSB formation, and what additional factors are needed for Hop1-dependent DSBs to be repaired by canonical meiotic recombination mechanisms.
通过同源重组进行的减数分裂双链 DNA 断裂 (DSB) 修复通过由不同决策点定义的多个过程进行。一项重要的决定涉及伴侣的选择,是与姐妹染色单体(有丝分裂期间的显性修复伴侣)重组还是与同系物(不同亲本起源的同源染色体,减数分裂期间的首选伴侣)重组。另一个重要的决定涉及重组途径的选择,在产生交叉(交换侧翼染色体序列)或非交叉之间。我们小组的一个标志性贡献是证明交叉和非交叉重组通过不同的机制进行,这些机制在链入侵的初始阶段后出现分歧,并且具有不同的生化活性和遗传要求。之前审查期间的工作表明,保守的 Sgs1-Top3-Rmi1 解旋酶-拓扑异构酶复合物 (STR) 负责在非交叉和交叉途径之间划分早期重组事件。 Sgs1-Top3-Rmi1 是哺乳动物 BLM 解旋酶-Top3alpha-BLAP75 复合物的酵母同源物,与人类癌症避免和重组控制有关。我们表明,酵母复合体的所有三个成员对于正常重组伴侣的选择以及受调控的减数分裂交叉和非交叉重组途径的群体都是至关重要的。基于这些发现,我们假设 STR 通过促进早期链入侵中间体的频繁分解,充当早期重组中间体的伴侣。我们假设这些链入侵和拆卸的重复循环将导致模板转换,这反过来又会导致具有嵌合亲本链贡献的重组体。这一假设现已通过在高度多态性测试间隔中发生的重组体高通量测序得到证实。超过 2/3 的重组体显示出模板转换、多链入侵或两者兼而有之的明确证据。此外,我们还发现了交叉途径特有活动的证据,包括分支迁移(交叉的 2/3)和核酸外切间隙形成(交叉的 1/3)。目前的工作旨在确定负责这些活动的蛋白质。其他工作旨在通过使用我们开发的专门纯化含有霍利迪连接体的中间体的新方法绘制重组中霍利迪连接体的位置来确认分支迁移。最后,我们正在研究染色体结构,特别是减数分裂染色体轴如何有助于重组的调节。染色体轴成分的减数分裂特异性子集 Hop1 和 Red1 蛋白对于减数分裂 DSB 的形成和伴侣选择非常重要,并且相对于其他区域在基因组的某些区域中富集。使用一种新方法将轴蛋白招募到通常缺乏这些蛋白质的区域,我们已经证明高浓度的 Hop1 蛋白对于减数分裂 DSB 的形成是必要且充分的,但这些 DSB 引发的重组事件并不遵循典型的减数分裂重组途径。我们目前正在确定Hop1促进DSB形成的机制,以及Hop1依赖性DSB需要哪些额外因素才能通过典型的减数分裂重组机制进行修复。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MICHAEL J LICHTEN其他文献

MICHAEL J LICHTEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MICHAEL J LICHTEN', 18)}}的其他基金

Mechanism of Meiotic Recombination
减数分裂重组机制
  • 批准号:
    6558887
  • 财政年份:
  • 资助金额:
    $ 130万
  • 项目类别:
Mechanism of Meiotic Recombination
减数分裂重组机制
  • 批准号:
    6949799
  • 财政年份:
  • 资助金额:
    $ 130万
  • 项目类别:
Mechanism of Meiotic Recombination
减数分裂重组机制
  • 批准号:
    8762988
  • 财政年份:
  • 资助金额:
    $ 130万
  • 项目类别:
Mechanism of Meiotic Recombination
减数分裂重组机制
  • 批准号:
    9153472
  • 财政年份:
  • 资助金额:
    $ 130万
  • 项目类别:
Mechanism of Meiotic Recombination
减数分裂重组机制
  • 批准号:
    7592518
  • 财政年份:
  • 资助金额:
    $ 130万
  • 项目类别:
Mechanism of Meiotic Recombination
减数分裂重组机制
  • 批准号:
    8157168
  • 财政年份:
  • 资助金额:
    $ 130万
  • 项目类别:
MECHANISM OF MEIOTIC RECOMBINATION
减数分裂重组机制
  • 批准号:
    6289086
  • 财政年份:
  • 资助金额:
    $ 130万
  • 项目类别:
Mechanism of Meiotic Recombination
减数分裂重组机制
  • 批准号:
    10262008
  • 财政年份:
  • 资助金额:
    $ 130万
  • 项目类别:
Mechanism of Meiotic Recombination
减数分裂重组机制
  • 批准号:
    10014275
  • 财政年份:
  • 资助金额:
    $ 130万
  • 项目类别:
Mechanism of Meiotic Recombination
减数分裂重组机制
  • 批准号:
    7038486
  • 财政年份:
  • 资助金额:
    $ 130万
  • 项目类别:

相似国自然基金

肠道微生物动态演变数学模型构建及壳寡糖转运代谢过程研究
  • 批准号:
    32302102
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血液微循环生物力学过程的相场模型建模与计算方法
  • 批准号:
    12371388
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
考虑矿物质吸附、基于微生物过程的土壤有机碳分解模型的发展及其与陆面模式AVIM的耦合
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
Lévy过程驱动下的随机生物种群模型的动力学行为
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
污水生物处理过程虚拟监测模型和高级控制算法研究
  • 批准号:
    51908303
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Deciphering the mechanics of microtubule networks in mitosis
破译有丝分裂中微管网络的机制
  • 批准号:
    10637323
  • 财政年份:
    2023
  • 资助金额:
    $ 130万
  • 项目类别:
Virtual drug screen reveals context-dependent inhibition of cardiomyocyte hypertrophy
虚拟药物筛选揭示了心肌细胞肥大的情境依赖性抑制
  • 批准号:
    10678351
  • 财政年份:
    2023
  • 资助金额:
    $ 130万
  • 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
  • 批准号:
    10679749
  • 财政年份:
    2023
  • 资助金额:
    $ 130万
  • 项目类别:
Novel approach to identify RNA-bound small molecules in vivo
体内鉴定 RNA 结合小分子的新方法
  • 批准号:
    10646626
  • 财政年份:
    2023
  • 资助金额:
    $ 130万
  • 项目类别:
A co-infection model for papillomavirus associated infections and cancers
乳头瘤病毒相关感染和癌症的共感染模型
  • 批准号:
    10667710
  • 财政年份:
    2023
  • 资助金额:
    $ 130万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了