Developing next generation multiphoton systems to reveal cortico-thalamic interactions underlying short-term memory in behaving mice

开发下一代多光子系统以揭示行为小鼠短期记忆背后的皮质-丘脑相互作用

基本信息

  • 批准号:
    10680577
  • 负责人:
  • 金额:
    $ 24.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

One of the goals of systems neuroscience is to understand how sensory information is transformed into goal- directed behavior via diverse brain regions and circuits. To achieve this aim, it is critical to elucidate computations performed within specific layers of the cortex by specific cell classes and the communication dynamics between multiple brain regions. Two-photon microscopy has been used successfully to perform functional brain imaging at the single-cell level mice, but its penetration is limited by tissue scattering to the top layers of the cortex. I have developed a 3-photon microscope to overcome this challenge. Today, the main drawback of 3-photon microscope is its relatively modest speed, limiting its use for multi-site imaging. Optimizing instrument design and imaging protocol to overcome this limitation is required for broad end-user acceptance. In this proposal, I will construct and optimize a combined 2-photon and 3-photon microscope for multi-site, superficial and deep brain imaging at single-cell resolution. Specifically, I have first developed a custom-made 3-photon microscope with optimized laser and microscope parameters (Aim 1a). Optimizing these parameters can improve imaging speed and imaging depth while lowering the average laser power to avoid damage in the live mouse brain. The microscope performance improvement has been validated by performing functional imaging in the primary visual cortex of GCaMP6 mice to characterize visual responses of each cortical layer and subplate. In addition, I will characterize the effective attenuation lengths (EAL) of higher visual areas in awake mice with label-free imaging and laser-ablation methods. Then, I will demonstrate the microscope’s performance by examining cell-specific differences within a layer 6 (L6) of V1. Since neuronal responses to visual stimuli are modulated by the cortical state such as arousal, or reward expectation, I will image adjacent sets of neurons with distinct projections to the lateral geniculate nucleus (LGN) and lateral posterior (LP) regions (e.g., cortico-cortical [CC] and cortico-thalamic [CT] neurons in L6) in primary and higher visual areas to reveal circuit-based response types within a single cortical layer using retrobead-based tracing methods (Aim 1b). Next, I have developed custom-made 2-photon wide-field microscope to perform neuronal recordings and manipulations in the primary visual cortex and higher visual areas (Aim 2a). I have improved imaging speed and field of view by implementing multifocal multiphoton microscopy (MMM). Multiple foci two-photon excitation efficiency will be optimized by coupling a diffractive element (DOE) with customized intermediate optics. High sensitivity single-photon counting detection will be achieved using a novel avalanche photodiode array detector. To demonstrate microscope performance and which brain regions are necessary for a well-established goal-directed behavioral paradigm, I will perform SLM- based two-photon optogenetics while imaging expert animals (Aim 2b). In addition to imaging and stimulating neuronal activity across superficial depths at single regions and at multiple regions, it is necessary to image and optogenetically manipulate neuronal activity at multiple depths, at targeted locations, and for identified neurons, in order to determine the causality of neuronal subpopulations in behavior. Here, I will design and implement two- and three-photon MMM systems to extend the depth performance of MMM for multi-site neuronal recording across multiple regions and multiple layers and integrate this system with the 2-photon optogenetics system implemented in Aim 2a (Aim 3a). I will use this technology for modulating specific components of the cortico- cortical and cortico-thalamo-cortical projections of V1-V2-PPC-MC circuit (Aim 3b).
系统神经科学的目标之一是了解感觉信息如何转化为目标 通过不同的大脑区域和回路来引导行为为了实现这一目标,阐明计算至关重要。 由特定的细胞类别和之间的通信动态在皮层的特定层内执行 双光子显微镜已成功用于进行功能性脑成像。 在单细胞水平的小鼠中,但它的渗透受到组织分散到我的皮质顶层的限制。 开发了 3 光子显微镜来克服当今 3 光子的主要缺点。 显微镜的缺点是其速度相对适中,限制了其在优化仪器设计中的使用。 在本提案中,需要克服这一限制的成像协议才能得到广泛的最终用户接受。 将构建和优化用于多位点、浅层和深层的 2 光子和 3 光子组合显微镜 具体来说,我首先开发了一种定制的三光子显微镜。 优化激光和显微镜参数(目标 1a)。 速度和成像深度,同时降低平均激光功率以避免对活体小鼠大脑造成损害。 通过在初级视觉中进行功能成像,显微镜性能的改进已得到验证 GCaMP6 小鼠的皮质来表征每个皮质层和亚板的视觉反应。 通过无标记成像表征清醒小鼠较高视觉区域的有效衰减长度 (EAL) 然后,我将通过检查细胞特异性来演示显微镜的性能。 V1 的第 6 层 (L6) 内存在差异,因为对视觉刺激的神经反应是由皮质调节的。 状态,例如唤醒或奖励期望,我将对相邻的神经元组进行成像,并对其进行不同的投影 外侧膝状核 (LGN) 和外侧后部 (LP) 区域(例如皮质-皮质 [CC] 和皮质-丘脑 [CT] L6 中的神经元)位于初级和高级视觉区域,以揭示单个视觉区域中基于回路的反应类型 接下来,我开发了定制的 2 光子。 宽视野显微镜,用于在初级视觉皮层和更高级别进行神经记录和操作 视觉区域(目标 2a)通过实施多焦点多光子提高了成像速度和视野。 显微镜(MMM)。多焦点双光子激发效率将通过耦合衍射来优化。 具有定制中间光学元件(DOE)的高灵敏度单光子计数检测将被实现。 使用新型雪崩光电二极管阵列探测器实现了展示显微镜性能和 哪些大脑区域对于一个完善的目标导向行为范式是必要的,我将执行 SLM- 基于双光子光遗传学,同时对专业动物进行成像(目标 2b)。 单个区域和多个区域的浅层神经活动,有必要进行成像和 光遗传学操纵多个深度、目标位置和已识别神经元的神经元活动, 为了确定神经亚群在行为中的因果关系,我将在这里设计和实现。 二光子和三光子 MMM 系统可扩展 MMM 的深度性能以进行多位点神经记录 跨多个区域和多个层,并将该系统与 2 光子光遗传学系统集成 在目标 2a(目标 3a)中实施,我将使用该技术来调节皮质的特定组件。 V1-V2-PPC-MC 回路的皮质和皮质-丘脑-皮质投影(目标 3b)。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Murat Yildirim其他文献

Murat Yildirim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Murat Yildirim', 18)}}的其他基金

Developing next generation multiphoton systems to reveal cortico-thalamic interactions underlying short-term memory in behaving mice
开发下一代多光子系统以揭示行为小鼠短期记忆背后的皮质-丘脑相互作用
  • 批准号:
    10671180
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:
Developing next generation multiphoton systems to reveal cortico-thalamic interactions underlying short-term memory in behaving mice
开发下一代多光子系统以揭示行为小鼠短期记忆背后的皮质-丘脑相互作用
  • 批准号:
    9977555
  • 财政年份:
    2020
  • 资助金额:
    $ 24.9万
  • 项目类别:

相似国自然基金

基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
  • 批准号:
    72303209
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
热带森林土壤氮添加下微节肢动物对氮转化过程的调控
  • 批准号:
    32360323
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
Slc39a13在哺乳动物铁代谢中的作用
  • 批准号:
    32371226
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
乳酸介导的组蛋白乳酸化调控哺乳动物主要合子基因组激活的机制研究
  • 批准号:
    82301880
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
早期环境暴露对儿童哮喘免疫保护的动物实验和机制研究
  • 批准号:
    82300031
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Brainstem cold-defense circuitry
脑干冷防御电路
  • 批准号:
    10735327
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Arousal-induced noradrenergic signaling modulates cortical astrocyte-neuron circuits during ethanol consumption
唤醒诱导的去甲肾上腺素能信号在乙醇消耗过程中调节皮质星形胶质细胞-神经元回路
  • 批准号:
    10831585
  • 财政年份:
    2023
  • 资助金额:
    $ 24.9万
  • 项目类别:
Genetic Manipulation of Retinal Ganglion Cell Subtypes
视网膜神经节细胞亚型的基因操作
  • 批准号:
    10528207
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:
Genetic Manipulation of Retinal Ganglion Cell Subtypes
视网膜神经节细胞亚型的基因操作
  • 批准号:
    10688275
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:
Molecular and cellular basis of reversible hypothermia
可逆低温的分子和细胞基础
  • 批准号:
    10583822
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了